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PREFACE

« One has often the impression that mathematicians talk about set

theory as something unique. They appear to mean the Zermelo-

Fraenkel theory. Of course the assumed uniqueness is illusory.»

Albert Thoralf Skolem (23 May 1887 – 23 March 1963),
in ‘Studies on the Axiom of Comprehension’ : [38], §3, p. 167.

It is certainly the relativity inherent in any axiomatic theory - which
he underscored and to which logicians are now accustomed - that forced
Skolem to write in his last submitted paper these few words about the most
accepted set theory, of which incidentally he is one of the founders. But for
a mathematician and his unfailing curiosity, this relativeness is a gift. So it
was presumably just to satisfy his curiosity that Skolem started investigating
alternative semantics for naive set theory at the end of his life. The title of
my thesis is a respectful allusion to his last pioneer work.

The main theme pervading this thesis is ‘positive set theory’, which, as
we shall see, originates precisely in that work by Skolem. I shall show that
this solution route to the set-theoretical paradoxes is sensitive to the use of
an abstractor in the language; and the price to be paid for this is the loss
of equality in formulas defining sets. Thereupon I shall also examine to my
cost another solution route in which equality is blamed for the paradoxes.
Both of these ways out hang together in sharing the existence of topological
models, which is another permeating theme in this thesis.

The plan is briefly as follows. The first chapter is an introduction to
Frege’s original formulation of the logical notion of set, which does provide a
good starting point as we can trace the use of an abstractor to Frege. For the
most part, Chapter 2 may be regarded as an index of notations, though it
contains some insights on positive formulas and topological models. In Chap-
ter 3, I make a brief excursion into non-classical logic, relating the emergence
of the distinction comprehension/abstraction in positive set theory and the
existence of topological models. On my way, I revisit Skala’s topological set
theory in Chapter 4 on both the axiomatic and semantic sides. I show in
Chapter 5 that the models of positive comprehension given by Skolem in [38]
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are in fact the natural topological solutions to the consistency problem for
positive abstraction with extensionality. Finally, a term model solution to
that problem is discussed in Chapter 6. It is not a good place here to give
a more intelligible description of my investigations; anyway, I have devoted
Chapter 3 to that.

It was initially planed to include a second part to this thesis, in which the
paracomplete and the paraconsistent versions would have been discussed in
details. But in view of the extent of the task, I have had to content myself
with supplying the reader with a few bibliographical references, including my
first publications on the subject.

One of my principal goals in writing this thesis was to show that it is really
possible to have a comprehensive view of various alternative proposals. I have
not been looking for a new one. I have just tried too to satisfy my curiosity,
and as often in mathematics, this has proved to be enriching.

I would like to thank all the participants of our seminars, and especially
those few fanatics of non-standard set theories. They will recognise them-
selves. Of course, I owe a special dept of gratitude to one of them in partic-
ular, my adviser, Roland Hinnion, for having let his curiosity rub off on me.
May this thesis contaminate others.
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Chapter 1

FREGE’S THEORY OF
CONCEPTS AND EXTENSIONS

Set theory was created by Georg Cantor, so we start with the ‘definition’ of
the naive concept of set, as given in the final presentation of his lifework:

« A set is a collection into a whole of definite distinct objects

of our intuition or of our thought. The objects are called the

elements (members) of the set.» [Translated from German.]

By ‘into a whole’ is meant the consideration of a set as an entity, an
abstract object, which in turn can be collected to define other sets, etc. This
abstraction step marks the birth of set theory as a mathematical discipline.

The logical formulation of the naive notion of set, however, was first
explicitly presented at the end of 19th century by one of the founders of
modern symbolic logic, Gottlob Frege, in his attempt to derive number theory
from logic. As widely known, the resulting formal system was proved to be
inconsistent by Russell in 1902.

In this introductory philosophically-oriented chapter, we briefly review
some basic features of Frege’s theory in order to frame and motivate our
investigations.

1.1 The abstraction process
First of all, Frege’s original predicate calculus is second-order. To simplify
matters, let us say here that there are two types of variables ranging over
mutually exclusive domains of discourse, one for objects (u, v, . . .), another for
concepts (P,Q, . . .), where a concept P is defined to be any unary predicate
P (x) whose argument x ranges over objects.

Frege’s system is characterized by a type-lowering correlation: with each
concept P is associated an abstract object, the extension of the concept,
which is now familiarly denoted by {x | P}, and is meant to be the collection
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of all objects x that fall under the concept P . This correspondence between
concepts and objects is governed by the following principle, known as

Basic Law V:

∀P ∀Q ( {x | P} = {x | Q} ←→ ∀u(P (u) ≡ Q(u)) ).

The equality symbol = on the left-hand side is the identity between objects,
which Frege takes as primitive in his language. The right side is the material

equivalence of concepts, where≡ is an abbreviation for ‘having the same truth
value’. This may be the material biconditional ↔, but in Frege’s notation
this is again =. The reason is that in his system predication is understood as
functional application. To do that Frege naturally selects two special objects
he calls truth-values and he just defines a concept to be any function that
maps objects to truth values. Accordingly, it may be more perspicuous to
denote the extension of a concept P by λxP , using notation from the λ-
calculus, and think of it as the graph of the function defining it, which Frege
calls course-of-values.1 Note that Frege insists on a rigid distinction between
functions and objects: a concept is not an object; only its extension is.

Whether a concept be looked at as a predicate or as a (truth-)function,
we shall call this objectification of concepts abstraction. It has rarely been
emphasized that Frege internalizes this process in the language by explicitly
making use of an abstraction operator to name the extension of a concept.
Whether denoted by {· | −} or by λ·−, the use of such an abstractor in the
language of set theory is one source of investigation in this thesis.

1.2 Sets and membership
Those objects that are extensions of concepts are called sets. Frege then
defines what it is for an object to be a member of a set: u is a member of
v, denoted by u ∈ v, if and only if u falls under a concept of which v is
the extension, i.e., ∃P (v = {x | P}∧P (u)).2 Note incidentally that both
second-order and the use of the abstractor are required for that definition, or
for the one of the concept ‘being a set’, that is, Set(v) :≡ ∃P (v = {x | P}).

Given the definition of membership, an immediate consequence of Basic
Law V is the

Law of Extensions:

∀P ∀u(u ∈ {x | P} ≡ P (u))

1 By the way, Frege’s original notation for the extension of a concept is something like
ε‘ P (ε), which is indeed the embryonic version of the present λ-notation.

2 The epsilon notation ‘∈’ is due to Peano. Frege used something similar to ‘∩’ to
designate the membership relation.
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from which by Existential Introduction follows the well-known

Principle of Naive Comprehension:

∀P ∃v∀u(u ∈ v ≡ P (u)).

According to the Law of Extensions, ‘∈’ may just be regarded as an al-
legory for predication, this latter being now a proper object of the language.
But using the λ-notation, membership should rather be understood as appli-

cation ‘ · ’, so that the Law of Extensions would correspond to the

Principle of λ-Conversion:
∀P ∀u(λx P · u = P (u)).

Another significant rule derivable from Basic Law V is the

Principle of Extensionality:

∀v∀w(Set(v) ∧ Set(w) −→ (∀u(u ∈ v ≡ u ∈ w) → v = w)).

Sets, thought of as collections, are thus completely determined by their mem-
bers. By combining the Law of Extensions and the Principle of Extension-
ality, it is shown that any set v is at least the extension of the concept
P (x) :≡ x ∈ v, i.e.: ∀v(Set(v) → v = {x | x ∈ v}). Note that there is no
presumption that all objects are sets. As our aim is merely to study pure
and abstract set-theoretic systems, we shall however assume this from now
on, that is to say, ∀v Set(v).

1.3 First-order versions
Second-order logic and the use of an abstractor are by no means necessary to
render an account of naive set theory. First-order versions of Frege’s calculus
are obtained by taking ∈ as primitive notion in the language, retaining the
Principle of Extensionality, and restricting either the Law of Extensions or
the Principle of Naive Comprehension to concepts definable by first-order
formulas (possibly with parameters).

In choosing the Law of Extensions the language is still assumed to be
equipped with an abstractor, which yields what we call the

Abstraction Scheme:

For each formula ϕ(x) of the language with abstractor,
∀u(u ∈ {x | ϕ} ≡ ϕ(u)).

By the choice of the Principle of Naive Comprehension, it is understood
that the language is no longer equipped with an abstractor, which gives the
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Comprehension Scheme:

For any formula ϕ(x) of the language without abstractor,
∃v∀u(u ∈ v ≡ ϕ(u)).

First-order comprehension with extensionality is often presented as the
ideal formalization of set theory. However that may be, it is inconsistent.
One of our goals is to clearly distinguish abstraction from comprehension in
a specific consistent context.

1.4 Russell’s paradox

Set Theory originated in Cantor’s result showing that some infinities are
definitely bigger than others. Paradoxically enough, it is precisely this rather
positive result that resulted in the inconsistency of Frege’s system, and so in
the incoherence of naive set theory.

Cantor proved, by its famous diagonal argument, that the domain of all
single-valued functions that map any given domain of discourse U to the
two-elements set {0, 1} cannot be put into one-to-one correspondence to U .3
But this clearly contradicted what the left-to-right direction of Basic Law V
was asserting, at least in its original second-order formulation.

Inspired by Cantor’s diagonal argument, Russell finally presented an el-
ementary proof of the incoherence of naive set theory by pointing out that
the mere existence of {x | x /∈ x} is simply and irrevocably devastating. Still
more dramatically, thinking of membership as predication, as hinted above,
one could reformulate the theory of concepts and extensions without even
explicitly referring to the mathematical concept of set as collection. That
Russell’s paradox could be so formulated in terms of most basic logical con-
cepts came as a shock.

1.5 Solution routes

If one believes in the soundness of logic as used in mathematics throughout
the ages, then one must admit that some collections are not ‘objectifiable’.
The decision as to which concepts to disqualify or disregard is as difficult
as it is counter-intuitive. This is attested by the diversity of diagnoses and
systems advocated.

3 It is to be noticed that Cantor did not use power sets. Just like Frege, he was making
use of (and expanding) the notion of function to develop his theory.
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Roughly, the various proposals may be divided into two categories ac-
cording to whether {x | x ∈ x} is accepted as a set or not. This distinction
is, of course, more emblematic than well-established.

The second category encompasses the so-called type-theoretic approaches,
those involving syntactical criteria to select admissible concepts by prohibit-
ing circularity in definitions. In this thesis we will rather be concerned with
type-free approaches, and mainly with ones that belong to the first category,
though we shall be led to make some incursions into the second as well.

Within those systems admitting {x | x ∈ x} as a set there is no alternative
but to tamper with the use of ¬ or with the definition of ≡. It is the former
alternative that is explored in details throughout this thesis.
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Chapter 2

LANGUAGE AND
SET-THEORETIC STRUCTURES

We cannot in good conscience begin without mentioning that throughout this
thesis we shall be assuming ZF as underlying theory. ZF

− stands for ZF

without the Foundation Axiom, and ZFA for ZF
−+ the Anti-Foundation

Axiom (as in [2] & [7]). Note that we always assume the Axiom of Choice.
Should we need it, the use of the Continuum Hypothesis or of any large
cardinal assumption will be stipulated.

In this chapter we set our notations and conventions concerning the lan-
guage of set theory in general, the ground theory in particular and the way
set-theoretic structures are represented in it. We do hope that this irksome
task will make the reading of the next chapters easier. The last section is by
far more attractive as it provides explanations and motivations on what we
are going to do in these.

2.1 The language of set theory

We start with a few notational conventions regarding the use of variables
within the first-order predicate calculus.

The letters x, y, z, . . . /p, q, r, . . . - also with subscripts, superscripts, etc. -
stand for variables of the object-language as well as for meta-variables ranging
over these (under the assumption that different letters stand for different
variables), and in particular we will reserve the letters p, q, r for parameters.
The Greek letters ϕ,ψ, χ and τ, σ, ρ are meta-variables for formulas and terms
respectively. We use the overline notation for finite lists of variables of a given
sort, e.g. x̄ for x1, . . . , xn.

By introducing a formula ϕ or a term τ as ϕ(x̄) or τ(x̄), we want to
underline the free occurrences (possibly none) of each of the variables x̄ in ϕ

or τ . Note that ϕ or τ may have free variables other than x̄; those additional
variables are called parameters. When we want to specify parameters too,
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we write ϕ(x̄, p̄) or τ(x̄, p̄) - in particular ϕ(p̄) or τ(p̄) if x̄ is empty; all the
free variables of ϕ or τ are then supposed to be among x̄, p̄.

Later in the same context, given ϕ(x̄) or τ(x̄) and a list of terms σ̄ of
the same length as x̄, we may write ϕ(σ̄) or τ(σ̄) to designate the result
of simultaneously replacing each free occurrence of xi in ϕ or τ by σi for
i = 1, . . . , n. And to avoid collisions of variables in substitutions, we may
assume that bound variables in formulas and terms have been replaced by a
ghost letter, at least formally, so that two formulas or two terms that only
differ in the name of their bound variables are regarded as identical.1

Finally, to deal with valuations in an easy way, we may also assume that,
given an interpretation, the object-language has temporarily been extended
by constants naming the elements of the domain; these constants may be the
elements of the domain themselves.

We now turn to a thorough examination of the language of set theory.

The basic language

What we denote by L is the language in first-order predicate calculus with

equality whose the only non-logical primitive symbol is ∈. Adding ‘∗’ as

subscript means that = is excluded from formulas. It is useful to take all
the usual logical connectives ¬,∧,∨,→,≡, ∀,∃ as primitive, for in the next
chapter we will be considering non-classical interpretations of these as well.
Unless otherwise explicitly stated, the underlying logic is supposed to be
classical and the interpretation of the connectives standard. It is then suitable
to incorporate in L two propositional constants ⊥ and � denoting any fixed
identically false statement and its negation.

Abstraction terms

In developing any extensional set theory it is common practice to virtually
extend the language L by introducing abstraction terms ‘{x | ϕ(x)}’, either
as defined terms (possibly with parameters) or as a façon de parler. We
emphasize that in both cases these are not proper symbols of L .2 These are
introduced as abbreviations to make certain expressions more readable or
easier to handle. They can be eliminated in accordance with their intended

1 For instance one might use Bourbaki’s square in formally defining the language, and
code formulas and terms as finite sequences in the metatheory.

2 In the second case they need not even be denoting objects of the theory. When a set
abstract is proved to be denoting, we may omit the quotation marks ‘ ’.
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meaning by applying successively the following rules:

R1. ‘{x | ϕ(x)}’ ∈ τ ⇔ ∃z(z = ‘{x | ϕ(x)}’ ∧ z ∈ τ)

R2. τ = ‘{x | ϕ(x)}’ ⇔ ∀z(z ∈ τ ↔ ϕ(z))

R3. z ∈ ‘{x | ϕ(x)}’ ⇔ ϕ(z)

where in R1 & R2 τ stands for any variable or for an abstraction term.3

Comprehension

Using these abbreviations, an instance of the comprehension scheme may be
more suggestively restated like this:

Comp[ϕ(x)] : ∃y(y = ‘{x | ϕ(x)}’).

Here it is usually understood that the variable y does not occur free in ϕ.4
The removal of this familiar restriction, however, is not meaningless. It gives
rise to what we call reflexive comprehension, a typical instance of which is:

Comp� [ϕ(x, y)] : ∃y(y = ‘{x | ϕ(x, y)}’).

Obviously, whenever y is not free in ϕ, we recover classical comprehension.
Assuming extensionality, the y provided by Comp[ϕ(x)] is unique, and

‘{x | ϕ(x)}’ can thus be defined as a name for it; but there is no guarantee
that the y given by Comp� [ϕ(x, y)] is. There might be many such y’s. For in-
stance, if we take ϕ to be x ∈ y, then any set y is solution to Comp� [ϕ(x, y)].5

Accordingly, we may consider the use of a syntactical device to name, in
an uniform way, one solution to each instance of the comprehension scheme
under consideration.

The extended language

What we designate by Lτ is the actual extension of L obtained by adjoining
an abstractor {· | −} so as to allow the formation of set abstracts as primitive

3 Of course, the new variable z introduced in R1 & R2 is supposed not to be occurring
free in τ or ϕ. Mention of such obvious precautions will be omitted henceforth. Note also
that according to R1, the occurrence of an abstraction term on the left side of ∈ compels
it to be denoting.

4 Cf. previous footnote.
5 For a more elaborated example, we may instance the result according to which if ZF−

is consistent, so is ZF− + the existence of infinitely many Quine atoms, where a Quine
atom is just defined to be a set y such that y = ‘{x | x = y}’. On the other hand, there is
one and only Quine atom in ZFA, and none in ZF .
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terms of the language. The rule governing the use of this term-forming
operator is the following:

for any distinct variables x & y and any Lτ -formula ϕ(x, y),
{x |y ϕ} is an Lτ -term in which x & y are bound and all the
remaining variables occurring free in ϕ are taken to be free.

Note that according to our convention regarding bound variables, {x |y ϕ}
and {x� |y� ψ}, where ψ is ϕ(x�, y�), are identical. We let {x | ϕ} stand for
any {x |y ϕ} where y does not occur free in ϕ.

Abstraction

Within this extended language, we shall speak of abstraction instead of com-
prehension to stress that set abstracts may already appear as terms in the
formula ϕ involved in the corresponding instance, which is formulated by

Abst[ϕ(x)] : {x | ϕ} = ‘{x | ϕ(x)}’

or, for the reflexive version, by

Abst� [ϕ(x, y)] : {x |y ϕ} = ‘{x | ϕ(x, {x |y ϕ})}’ .

The use of abstraction terms here is subject to the same rules as above,
according to which simple set abstracts {x | ϕ} could thus be eliminated,
but not reflexive ones, as {x |y x ∈ y} would show.

In any consistent situation, not every set abstract can be denoting so
that the abstractor can only be partially defined. We are going to study
an example of such a situation in which in particular we can draw a clear
distinction between comprehension and abstraction.

In places we will make use of the λ-notation discussed in Chapter 1. The
corresponding notations for {x | ϕ} and {x | ϕy} are λxϕ and λyxϕ. It is
there also appropriate to replace membership ‘∈’ by application ‘ · ’ in the
language.

Some useful abbreviations

We end Section 2.1 by introducing names for certain abstraction terms. These
are mainly used in Chapter 4. Let us agree that whenever X is a name for
‘{x | ϕ(x)}’, (X ) will stand for (the universal closure of) Comp[ϕ(x)].

Attached to propositional constants and atomic formulas are the following
abstractions terms and their names:

Λ := ‘{x | ⊥}’ W := ‘{x | x ∈ x}’ V := ‘{x | �}’
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A (p) := ‘{x | p = x}’ B(p) := ‘{x | p ∈ x}’ .
Note that A (p) is equally defined by ‘{x | x = p}’ and that ‘{x | x ∈ p}’ = p.6

Beside ∈ and = two non-primitive binary relations deserve a particular
interest. These are defined as follows:

x �. y ⇔ ∀z(z ∈ x → z ∈ y) x �̇ y ⇔ ∀z(x ∈ z → y ∈ z).

The relationship between these and the primitive symbols ∈ and = may be
underlined by the following observation.

Fact 2.1.1. x ∈ y ⇔ A (x)�. y and, assuming (A ), x = y ⇔ x �̇ y.

Whether (A ) is assumed or not, �. has a major part in any set theory,
as it is, of course, the inclusion relation, commonly denoted by ⊆.7

However odd that may seem, we are going to examine situations in which
(A ) fails. According to Fact 2.1.1, in such a situation �̇ may be thought of
as a reminiscence of the equality; this will be underscored in Chapter 4.

We now introduce the following abstraction terms attached to �. and �̇:

P(p) := ‘{x | x �. p}’ M (p) := ‘{x | p �̇ x}’ .

P(·) is the well-known power-set operator. The role of M (·) is going to have
to be explained (see Chapter 4). Neither ‘{x | p �. x}’ nor ‘{x | x �̇ p}’ will
be of interest to us in our investigations.

By the way, we also introduce the abstraction term corresponding to
complementation, to which we reserve a particular treatment:

C (p) := ‘{x | x /∈ p}’ .

At last, we point out two useful abbreviations, which are sometimes re-
ferred to as the extensional and the intensional equalities respectively:

x =. y ⇔ x �. y ∧ y �. x x
.= y ⇔ x �̇ y ∧ y �̇ x.

In any extensional set theory, = must coincide with =. , so that the equality
might not be taken as primitive symbol. Note that, in the absence of = in
the language, extensionality should be formulated by ∀x∀y(x =. y → x

.= y),
which guarantees that =. has the substitutivity property for L∗-formulas. It
is worth noticing that the converse of this, namely ∀x∀y(x .= y → x =. y),
holds in any set theory satisfying (B) and, still more obviously, in any one
satisfying (A ), as then .= must be = (more comments on this in Chapter 4).

6 For this latter extensionality is required.
7 We will reserve this notation for the meta-theory.
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2.2 About the ground theory

As we said at the beginning, we shall be working within ZF as meta-theory.
We assume all the customary practices of that set theory in the background,
as the relaxed use of the ‘set of’ operator { }, etc. The reader will notice that
we use (as much as possible) a smaller ∈ for the meta-theoretic membership.

We want to introduce here our particular notations as regards functions.
We would remind the reader that set-theoretically a function f is defined by
its graph, that is, the set of ordered pairs (x, f(x)). Thus functions are just
particular sets of couples, namely (binary) relations. Some special notations
will apply to relations, and then to functions.8

As usual, given a set R of ordered pairs, we write x R y for (x, y) ∈ R.
The domain and the range of R are defined by domR := {x | ∃y : x R y}
and rngR := domR−1, where R−1 := {(x, y) | y R x}; and given a set E, we
denote the image of E under R by R“E := {y | ∃x ∈ E : x R y}.

When f is a function, the value of f at x is denoted by f ‘x, which is thus
defined by {f ‘x} = f“{x}, so that functional application in the meta-theory
is preferably written f ‘x instead of f(x). We naturally extend this notation
to list of variables, say x̄ = x1, . . . , xn, by setting f ‘x̄ := f ‘x1, . . . , f ‘xn. This
is not to be confused with f ‘(x̄) or f(x̄) in case f has many variables, i.e.,
when domf is a set of tuples (x̄) = (x1, . . . , xn). Note incidentally that we
will tacitly use all the habitual labor-saving devices in handling tuples and
cartesian products. Thus, though tuples are formally defined as ordered pairs
in ZF , it may be more convenient in some circumstances to look at them as
finite sequences, so that for instance we may identify the cartesian products
A× (B × C) and (A×B)× C, and then simply write A×B × C, etc.

For functional abstraction in the meta-theory, we agree that any function
f may equally be designated by x �→ f ‘x. This enables us to easily define
new functions from old. For instance, if we are given a two-variables function
(x, y) �→ f ‘(x, y) and b ∈ rng(domf), then g : x �→ f ‘(x, b) will represent the
function g = {(a, f ‘(a, b)) | a ∈ dom(domf)}.

The notation f : A −→ B means that f is a function with domf = A and
rngf ⊆ B, and we denote the set of all functions f : A −→ B by (A → B).
The notation β

α is reserved for exponentiation of cardinals α = |A|, β = |B|.
We write A � B to indicate that two sets A and B have the same cardinal.
If a particular kind of structure has been specified on these and we want to
express that they are isomorphic in the corresponding category of structured
sets, we write A ∼= B. Thus � does correspond to ∼= in the category of pure
sets, which we call SET .

8 These notations may apply as well to relations and functions that are proper classes.



2.3. Set-theoretic structures 13

There is a correspondence in SET that is worth making explicit, namely
the canonical bijection between the power-object P(A) and the exponential

(A → 2), where 2 = {0, 1}. It will be designated by ıA : P(A) −→ (A → 2)
and its inverse by A : (A → 2) −→ P(A), i.e.

for any E ∈ P(A), ıA‘E : x �−→ 1 if x ∈ E

0 otherwise

and

for any f ∈ (A → 2), A‘f := {x ∈ A | f ‘x = 1} .

Although they are isomorphic in SET , there is a difference from the categor-
ical point of view between P(A) and (A → 2), in that the endofunctor P(·)
is covariant whereas (·→ 2) is contravariant : when F(·) is P(·) the action
of F(·) on f : A −→ B is defined by f

F : P(A) −→ P(B) : E �−→ f“E;
when F(·) is (·→ 2) it is given by f

F : (B → 2) −→ (A → 2) : h �−→ h ◦ f .
Thus (g ◦ f)F = g

F ◦ f
F in the first case, whereas (g ◦ f)F = f

F ◦ g
F in the

second. (As usual, we use ‘◦’ for composition of functions or relations.)

2.3 Set-theoretic structures
Here we present different ways of modelling a set-theoretic structure. As that
will be illustrated throughout this thesis, one view may prove more suitable
than another depending on the context. We also have a look at corresponding
homomorphisms and the formulas they preserve.

Structures

As an L -structure, a set-theoretic universe U is regarded as

�U ;∈U� where ∈U ⊆ U × U (U �= ∅).

But if a set is to be conceived of as the collection of its members, the following
equivalent presentation is arguably more natural:

�U ; [·]U � where [·]U : U −→ P(U)
v �−→ {u ∈ U | u∈U v}.

We call [y]U the extension of y in U .9

9 It is worth stressing the difference between Frege’s definition of the extension of a
concept, which is the corresponding set as object, and the extension of a set in a given
structure as defined here.
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We now display the notations for the valued counterparts of these settings:

�U ; �U� where �U : U × U −→ 2

and

�U ; [[·]]U � where [[·]]U : U −→ (U → 2)
v �−→ (u �→ �U ‘(u, v)) .

Explicitly, �U = ıU×U ‘∈U and [[v]]U = ıU ‘[v]U for every v ∈ U .
Unless otherwise stated, the interpretation of the equality relation in a

structure is taken to be the identity, i.e.

∆U := {(u, v) ∈ U × U | u = v} / δU := ıU×U ‘∆U : (u, v) �−→ 1 if u = v

0 otherwise.

This canonical interpretation may not always be appropriate (as illustrated
in Chapter 6). Nevertheless, it is well known that any structure with an
acceptable interpretation of = can be contracted to a normal one, that is,
one in which = is the identity.10 As far as extensionality is concerned, the
extension function [·]U/[[·]]U is injective when U is normal.

Language in structures

As previously mentioned, given a structure U , we conveniently extend the
language by the elements of U seen as constants; this extended language is
designated by L (U) or Lτ (U). For this latter we will use the λ-notation
whenever structures are being looked at in the valued setting(s).

We denote the truth-value of a formula ϕ(p̄) interpreted in U , for the
assignation p̄ := ū in U , by |ϕ(ū)|U . The interpretation of a term τ(p̄) within
a structure U , for p̄ := ū in U , is designated by τU(ū).

What is needed to turn an L -structure into an Lτ -one is the interpre-
tation of the abstractor wherever it is defined, and this actually depends on
the fragment of Lτ under consideration.

Besides being subject to satisfying the corresponding instances of ab-
straction, the interpretation of {· | −} in a structure U has to fulfil a natural
substitutivity property. Namely, for any Lτ -formula ϕ(x, p̄) and list of Lτ -
terms τ̄(q̄) of the same length as p̄, it is required that, whenever all the terms
involved are defined, the following equality hold:

U |= {x | ϕ}U(τ̄U(ū)) = {x | ψ}U(ū)

10 By an ‘acceptable’ interpretation of = we mean one that ensures the substitutivity
property for formulas and terms of the language under consideration.
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for any ū in U of the same length as q̄, and where ψ is the formula ϕ(x, τ̄(q̄))
(and likewise for reflexive set abstracts).

Basically, the interpretation of the abstractor in a (normal) structure U
may be conceived of as the ‘inverse’ of the extension function [·]U/[[·]]U (we
are also assuming extensionality here). For this to be apparent, let us define
the pre-extension of a formula ϕ(x̄, p̄) in U , for p̄ := v̄ in U , by

�x̄ | ϕ(x̄, v̄)�U := {(ū) ∈ U
n | U |= ϕ(ū, v̄)}

or, for the valued version, by

��x̄ | ϕ(x̄, v̄)��U := ıUn ‘�x̄ | ϕ(x̄, v̄)�U : (ū) �→ |ϕ(ū, v̄)|U .

Thus, for instance, we have �x, y | x ∈ y�U = ∈U / ��x, y | y · x��U = �U , and
for each v ∈ U , �x | x ∈ v�U = [v]U / ��x | v · x��U = [[v]]U .

Now it is clear that

{x | ϕ}U(v̄) = [�x | ϕ(x, v̄)�U ]−1
U

/ (λxϕ)U(v̄) = [[��x | ϕ(x, v̄)��U ]]−1
U

and in particular {x | x ∈ p}U(v) = v / (λx p · x)U(v) = v, as required.

Homomorphisms and the formulas they preserve

A homomorphism of L -structures is defined to be a function f : U −→ V

such that for all u, v ∈ U , u∈U v ⇒ f ‘u∈V f ‘v, i.e. �U ‘(u, v) � �V ‘(f ‘u, f ‘v).
In this definition it is not required of a homomorphism that it preserve the
notion of extension; all we have is f“[v]U ⊆ [f ‘v]V . So we shall say that
f is a [·]-homomorphism if f“[v]U = [f ‘v]V , for each v ∈ U . To clearly
distinguish between these two notions of homomorphism, let us have a look
at the formulas they preserve. We say that a function f : U −→ V preserves
ϕ(p̄) if for any ū in U , U |= ϕ(ū) ⇒ V |= ϕ(f ‘ū), i.e. |ϕ(ū)|U � |ϕ(f ‘ū)|V .

On the one hand, it is well known that a homomorphism of L -structures
preserves positive existential L -formulas, i.e. those built up from ⊥,� and
atomic formulas by using ∨,∧,∃ only; in case the homomorphism is surjec-
tive, ∀ is allowed to occur, and this defines the set of positive L -formulas,
which is denoted by L +. Likewise, we recursively define the set Lτ

+ of
positive Lτ -formulas by restricting the abstractor to formulas in Lτ

+. Note
that if we require a surjective homomorphism f to preserve Lτ

+-terms, i.e.
for every ϕ(x, p̄) in Lτ

+ and any ū in U , f ‘{x | ϕ}U(ū) = {x | ϕ}V(f ‘ū), then
we get the same preservation result for Lτ

+-formulas.
On the other hand, it is proved that a surjective [·]-homomorphism does

preserve a larger class of L -formulas, the set of so-called bounded positive
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formulas, denoted by L [+], in which bounded quantifications of the form
‘∀x ∈ y’ are permitted too.11 As a distinguished member of L [+], we quote
the formula p �. q, and so p =. q. Given a [·]-homomorphism f : U −→ V ,
let us show that if ϕ(x, p̄) is preserved under f , so is ∀x(x ∈ pk → ϕ(x, p̄)),
where pk is in p̄.

Proof. Assume that ϕ(x, p̄) is preserved and that U |= ∀x(x ∈ uk → ϕ(x, ū)),
for ū given in U (uk in ū). Let v ∈ V such that v ∈V f ‘uk, that is, v ∈ [f ‘uk]V .
As f is a [·]-homomorphism, we can find u� ∈ [uk]U such that f ‘u� = v. Now,
from u� ∈U uk, we get U |= ϕ(u�, ū), and as ϕ(x, p̄) is preserved, we have
V |= ϕ(v, f ‘ū). Whence V |= ∀x(x ∈ f ‘uk → ϕ(x, f ‘ū)). �

We have thus introduced the classes L +
/Lτ

+
/L [+] in a natural way by

looking at formulas that are preserved under projections. In the next chapter
we will review what is known on comprehension/abstraction restricted to
these classes of formulas.

To give a complete account, we now conclude this section by a couple of
remarks related to homomorphisms again.

Remark 2.3.1. Assume we are given a set-theoretic structure U together with
an equivalence relation R on U . There is a natural way to try to define a
notion of extension on the quotient set V := U/R. Namely, we define [f ‘v]V
to be f“[v]U , where f : U −→ V : u �−→ R“{u} is the corresponding pro-
jection map. In order for this to work, it is necessary that for all v, v� ∈ U ,
v R v

� ⇒ R“[v]U = R“[v�]U , and as R is an equivalence relation, this amounts
to v R v

� ⇒ [v]U ⊆ R“[v�]U . In theoretical computer science an equiva-
lence relation R on U satisfying this condition is called a (bi)simulation.
It is now apparent that bisimulations are exactly kernels of surjective [·]-
homomorphisms (where the kernel of a map f is as usual the equivalence
relation R on domf defined by u R v if and only if f ‘u = f ‘v).

Remark 2.3.2. The reader familiar with category theory will have noticed
that our notions of [·]/[[·]]-structures are particular cases of coalgebras : given
a category CAT and an endofunctor F acting on CAT , a F-coalgebra is
defined to be any object U together with a morphism s : U −→ F(U). Thus,
within the category SET , [·]-structures and [[·]]-structures are just P(·)-
coalgebras and (·→ 2)-coalgebras respectively. Coalgebras form a category:
a F-morphism between F -coalgebras �U ; s� and �V ; t� is given by a morphism
f : U −→ V with a natural commutativity property. As far as F is covariant,
this condition is t◦f = fF◦s. In the case where F is contravariant, it should

11 This is no longer true for ‘∀x ∈ x’. On the other hand, bounded quantifications of the
form ‘∃x ∈ y’ and ‘∃x ∈ x’ are also preserved since these are actually positive.
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be expressed by f
F◦t◦f = s. It follows that the notion of P(·)-morphism and

the one of (· → 2)-morphism differ. What we called a [·]-homomorphism is
nothing but a P(·)-morphism, which was thus characterized by the condition
[f ‘v]V = f“[v]U , for every v ∈ U . In these terms, it is easily seen that the
corresponding condition for f to be a (· → 2)-morphism would correspond
to f−1“[f ‘v]V = [v]U , for each v ∈ U , which is clearly a strong requirement
for it is equivalent to u∈U v ⇔ f ‘u∈V f ‘v, for any u, v ∈ U . We might call
such a function f : U −→ V a [[·]]-homomorphism. When f is injective,
this is known as an embedding ; when f is surjective, it is in particular a
[·]-homomorphism. Note that it is hopeless to obtain consistency results for
formulas preserved under [[·]]-homomorphisms since x /∈ x is one of these.

2.4 Models for set theory
Given a set-theoretic structure U , rng[·]U is nothing but the set of collectable

subsets of U . We now define def[·]U to be the set of definable subsets of U , i.e.
def[·]U := {�x | ϕ(x, v̄)�U | ϕ(x, p̄) in L , v̄ in U}. Note that rng[·]U ⊆ def[·]U .

Russell’s paradox says that, in any case, �x | x /∈ x�U /∈ rng[·]U , from which
it follows that rng[·]U � P(U) (Cantor’s theorem). This is not an accident for
it can be shown that actually |def[·]U \ rng[·]U | = |U | if U is infinite (see [22]),
and, more obviously, that |P(U) \ rng[·]U | > |U | unless |U | = 1 or 2. So we
are very far from the idealistic Fregean situation U � P(U) /U � (U → 2).

In every model U of any extensional set theory, the set of collectable
subsets must have the same size as U . Some set theory might thus be char-

acterized in some of its models by the selection of a specific class of subsets
F(U) such that U � F(U). As a famous example, we may quote ZF .

Limitation of size

Given a set U and a cardinal κ, we let P<κ(U) stand in what follows for the
set of κ-finite subsets of U , i.e. {A ⊆ U | |A| < κ}.

Within ZF as framework, it is proved that there exists one and only set
U such that U = P

<ℵ0
(U), namely U = Vω, which is precisely known to be

a model of ZF �∞ (here [·]U is just taken to be the identity function).12 And
if one wants a model of infinity as well, this is still possible by invoking the

12 As the notation suggests, ZF �∞ stands for ZF without the Axiom of Infinity. By
the way, we would also remind the reader of the definition of the Vα’s, α an ordinal:
Vβ+1 := P(Vβ), for any β, and Vλ := {Vγ | γ < λ}, if λ is a limit ordinal. Notice that the
axioms of ZF− are just formulated in order that this construction, the so-called cumulative
hierarchy, can be achieved; in ZF , the universe does coincide with {Vα | α ordinal}.
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existence of a strongly inaccessible cardinal κ, so that Vκ , which is the sole
solution in ZF to U = P<κ(U), is itself a model of ZF .

It is worthy of note that if the meta-theory is ZFA, there are different
such U ’s: the minimal one is still Vκ, model of ZF , and the maximal one is
now itself a model of ZFA (idem when κ = ℵ0 but we lose infinity).

So we have indeed a situation here in which a model for some set theory,
which is ZF/ZFA, arises from a bijection - the identity as it is - between
a set U and a set of distinguished subsets of U , namely the κ-finite subsets.
Furthermore, the existence of these canonical models perfectly shows that
ZF is just the theory of hereditarily small and iterative sets; as for ZFA,
we simply drop the adjective ‘iterative’. It is the reason why the guiding
principle of ZF/ZFA for avoidance of the paradoxes is often referred to as
the so-called limitation of size doctrine.

Adding structure

A natural way of specifying a class of subsets of a given set consists in adding
some structure on it and then looking at particular subsets which are defined
in terms of the underlying structure. The previous example falls into this in
an obvious way: if Vω is regarded as a topological space with the discrete
topology, the finite subsets are just the compact ones, so Vω now appears as
a topological solution U to U � Pcpact(U), the set of compact subsets of U .

Viewing things that way has at least the merit of suggesting a more
interesting situation, in which the underlying topology on U would be such
that U itself be compact, so that this latter would be collectable, and so
there would be a universal set. In fact, it was shown that such a compact

solution to U � Pcpact(U) exists.13 More precisely, it is proved that within
a suitable category of T2-spaces there is one (and only) compact solution U
to U ∼= Pcl(U), the set of closed subsets of U - endowed with a suitable
topology. It was called Nω.

A very characteristic property of the corresponding set-theoretic struc-
ture, which is actually shared by any solution U to U � Pcl(U), is thus the
following: every class ‘{x | ϕ(x)}’ can be approximated by a least upper set,
the extension of which is just the closure of �x | ϕ(x)�U in U . This property
is explicitly formulated in Chapter 4 where it is referred to as (✸).

Interestingly, it turns out that the set-theoretic structure associated with
Nω is also a model of Comp[ϕ(x)] for every ϕ(x) in L [+], which is a syntactical

fragment of L - whereas the axioms of ZF are not. It is all the more inter-
esting in that it is shown in [12] that the first-order theory (✸)+Comp[L [+]],

13 Within ZFA as framework we may even write U = Pcpact(U).
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which was named GPK
+ for historical reasons, can interpret ZF �∞ in a nat-

ural way. And in order to interpret ZF , it suffices to add to GPK
+ an

axiom ensuring the existence of the least infinite Von Neumann ordinal ω,
which yields the theory GPK

+
∞ deeply investigated in [12]. Note that it was

originally proved in [17] that with a large cardinal assumption - namely the
existence of a weakly compact cardinal - the technique used to construct Nω

can be so carried out as to fulfil that relevant axiom of infinity.

Topological solutions

In light of what has been said, we may define a topological model for set theory
to be any set-theoretic structure U that is solution to an equation U � F(U),
or even better U ∼= F(U), where F(·) is some power-object/exponential act-
ing on a category of topological spaces. Typically, one may think of F(U)
to be Pcl(U), the set of closed subsets of U , or Pop(U), the set of open ones,
both endowed with some suitable topology if required. It is worth emphasiz-
ing that by a solution U we really mean a topological space U together with

a bijection / homeomorphism ‘[·]U’ realizing U � F(U) /U ∼= F(U).
In such set-theoretic structures it might be said that it is the indiscerni-

bility associated with the underlying topology that governs the collecting
process. And that such equations can be solved within suitable categories
of topological spaces would thus mean that, to some extent, the Fregean
problem is solvable under indiscernibility.

As we shall see, however, we are still far from the idealistic Fregean per-
spective. Indeed, in most cases the axiomatic set theory to which topological
models give rise is rather insignificant in itself from the foundational point
of view. In fact, the sole exception we know is our guiding example above.14

Anyway, we are not seeking a new proposal in this thesis. We are only
interested in consistency results on comprehension/abstraction restricted to
some syntactical fragments of L /Lτ . The next chapter is precisely intended
to show how topological considerations then naturally come into the picture.

14 It is shown in [12] that GPK+
∞ is as strong as ‘Kelley-Morse + On is ramifiable’.
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Chapter 3

CONTINUITY:
A SAFETY PROPERTY

Here we make a survey of various proposals which are closely related to our
investigations. The content of this chapter is to appear in [29].

3.1 Deviation in logic
It must be admitted that mathematical investigations in providing alternative

semantics have carried innovative ideas, and if all have not led to further
developments and applications, they have often led to a better understanding
of the topic considered.

Even within a well-established framework, the use of alternative semantics
has proved its fruitfulness. As an example, for independence results in ZF ,
one may quote the Boolean-valued version of forcing due to Scott and Solovay,
in which a set is conceived of as a function that takes its values into a given
complete Boolean algebra, no more into the 2-valued one. This concerns
classical logic and perhaps would remind the reader of the primal use of many-
valued semantics for proving the independence of axioms in propositional
logic. Note that there is no need to be interested in any possible meaning
of the additional ‘truth values’ to do that. We would rather say that the
explanation is in the application.

Now, it is legitimate to enquire whether the use of many-valued semantics
and the like could not also benefit, in one way or another, our understanding
of the set-theoretical paradoxes. After all, to know which logical systems

whatsoever can support the full comprehension scheme, or some fragments
of it, is an interesting question in itself, at least not devoid of mathematical
interest. We would then let the various proposals speak for themselves.

As said in Chapter 1, we shall be concerned with type-free approaches in
this thesis, and mainly with those that somehow reject classical negation.1

1 For a solution route in which the definition of ≡ is altered, while classical negation is
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So we review in this chapter some attempts in that direction, giving an
historical account on the subject in connection with the pioneering work of
Skolem in Łukasiewicz’s logics. Our aim is to trace and stress the use of
fixpoint arguments in semantic consistency proofs and, thereby, the role of
continuity in avoiding the paradoxes. It will then become apparent how close
these investigations were to other contemporary ones, as Kripke’s seminal
work on the liar paradox and Scott’s on models for the untyped λ-calculus.
We also aim to show how the distinction comprehension/abstraction and the
existence of topological models - both of which being explored in this thesis
- have emerged from such ‘deviant’ proposals.

3.2 Moh Shaw-Kwei’s paradox
The existence of the Russell set is prohibited in classical logic. By tampering
with the negation, some alternative logics have proved more tolerant. Never-
theless, there exist other sets that can affect such non-classical systems. This
was illustrated in 1954 by Moh Shaw-Kwei [32] who presented the following
extended version of Curry’s paradox.

Let → be the official implication connective of the logic considered. Pre-
cisely, in order that → may be referred to as an implication connective, it is
assumed that modus ponens holds, namely

MP : ϕ , ϕ → ψ � ψ

where � is the consequence relation associated with the logic.
To express Moh’s paradox, we define the n-derivative →n of the implica-

tion inductively as follows:

ϕ →0
ψ :≡ ψ and ϕ →n+1

ψ :≡ ϕ → (ϕ →n
ψ) (n ∈ N).

Then the implication connective is said to be n-absorptive if it satisfies the
absorption rule of order n, that is,

An : ϕ →n+1
ψ � ϕ →n

ψ.

Now, assuming that the implication is n-absorptive for some n > 0, it
is easily seen that any formula can be derived from the existence of the set
Cn := ‘{x | x ∈ x →n⊥}’, where ⊥ is a ‘falsum’ constant defined in such a
way that ⊥ � ϕ, for any ϕ.

maintained, the reader is referred to [3].
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Proof.

Comp[L ] � ∀x ( x ∈ Cn ↔ (x ∈ x →n⊥) ) [Comprehension] (1)
� Cn ∈ Cn ↔ (Cn ∈ Cn→n⊥) [Univ. Quant. Elimin.] (2)
� Cn ∈ Cn→n⊥ [(2)→ , An] (3)
� Cn ∈ Cn [(2)← , (3), MP ] (4)
� ⊥ [(3), (4), MP (n times)] (5).

Thus any formula can be derived and the theory is meaningless. �

As a particular case we have C1 = ‘{x | x ∈ x → ⊥}’, which might be
called the Curry set, and then we recover the Russell set R = ‘{x | x /∈ x}’ if
¬ϕ is defined by ϕ → ⊥, as it is the case in classical logic. Note incidentally
that C0 = ‘{x | ⊥}’, but this later is not problematic, of course.

3.3 The Łukasiewicz logics
A nice illustration is supplied by the most popular many-valued logics, the
Łukasiewicz ones. We shall content ourselves here with recalling the truth-
functional characterization of the connectives and quantifiers of these logics.

The set of truth values for the infinite-valued Łukasiewicz logic Ł∞ is
taken to be the real unit interval I := [0, 1] ⊆ R with its natural ordering,
which will be referred to as the truth ordering and denoted by �T . The sole
designated value is 1. Here are the truth functions of the logical operators:2

◦ ⊥ is 0 and � is 1;

◦ negation is defined by ¬x := 1− x, for any x ∈ I;

◦ conjunction and disjunction are the minimum and maximum w.r.t. �T ,
i.e., x ∧ y := min�T

{x, y} and x ∨ y := max�T
{x, y}, for any x, y ∈ I;

◦ quantifiers are thought of as generalized conjunction and disjunction,
i.e., for any A⊆I, ∀A := inf�T

A and ∃A := sup�T
A;

◦ last but not least, the truth function of the implication is specifically
defined by x → y := min�T

{1, 1 − x + y}. Notice that this is not the
‘material conditional’ x ⊃ y := ¬x∨ y ; we only have x ⊃ y �T x → y.
Thus defined, → is a characteristic function of the truth ordering, for
we have x → y = 1 if and only if x �T y, which ⊃ fails to fulfil here.
Consequently, ≡, which is just taken to be ↔, is still characterized by
x ≡ y = 1 if and only if x = y. That is to say, U |= ϕ ≡ ψ if and only
if |ϕ|U = |ψ|U , as in classical logic.

2 We use the same notation for the operators and their truth functions.
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For our purposes, we remark that if we equip I with the usual topology of
the real line, then each of the truth functions of the connectives is continuous.
The truth functions of the quantifiers are continuous as well with respect to
a reasonable topology on the set of subsets of I. This extra-logical property
of the interpretation of the logical operators will be of interest to us.

The n-valued Łukasiewicz logic Łn (n � 2) is obtained by restricting the
set of truth values to In := { k

n−1 | k ∈ n}. Particular cases are then the 2-
valued logic Ł2, which is nothing but classical logic, and the 3-valued one Ł3,
which historically was the first many-valued logic introduced by Łukasiewicz.

It was noticed in [32] that the implication is (n−1)-absorptive in Łn,
whereas it is not n-absorptive in Ł∞, for any value of n, whereupon the
author asked whether one could develop the naive theory of sets from Ł∞.

3.4 Skolem’s conjecture

This observation was the starting point in the late fifties of a course of papers
initiated by Skolem, who conjectured and tried to prove in [35] the consis-
tency of the full comprehension scheme in Ł∞.3 On the way, Skolem was led
to considering and investigating the consistency problem of some fragments
of that scheme in Ł3 & Ł2 [36, 37, 38], on which we are going to dwell later.

Skolem’s conjecture was partially confirmed by Skolem himself in [35]
and by Chang and Fenstad in different papers [10] & [15]. For instance,
Skolem only showed the consistency of the comprehension scheme restricted
to formulas containing no quantifiers, while Chang had quantifiers but no
parameters, or parameters but then some restrictions on quantifiers.

From the technical point of view, what should be said is that all these
first attempts are semantic and that their proofs are based on the original
method of Skolem, using at some stage a fixpoint theorem, namely Brouwer’s

fixpoint theorem for the space I
m, m ∈ N (or even for I

N), which states
that any continuous function on I

m (or I
N) has a fixpoint. We will meet

another famous fixpoint theorem which was also used, but rather implicitly,
in Skolem’s papers [36, 37].

We shall show in 3.6 how fixpoint arguments can be involved in such
semantic consistency proofs. Let us first see what a many-valued set-theoretic
structure looks like.

3 As just mentioned, this suggestion was made by Moh Shaw-Kwei in [32]. It should
be remarked however that Skolem does not cite that work. He might have arrived at his
conclusions independently.
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3.5 Many-valued structures
A set-theoretic structure U for a many-valued logic of which T is the set of
truth values is defined like the 2-valued classical version(s) presented in 2.3:

�U ; �U� where �U : U × U −→ T

or

�U ; [[·]]U � where [[·]]U : U −→ (U → T )
v �−→ (u �→ �U ‘(u, v)).

In the case of Ł2, we noticed in 2.3 that a normal structure U is extensional

if and only if [[·]]U is injective. But in the case of Ł∞ / Łn, n > 2, what it is for
a structure to be extensional is not so clear, for the principle of extensionality
itself may be subject to different interpretations. This is because in Ł∞ / Łn,
n > 2, the implication → is no longer the translation at the object-language
level of the consequence relation � (only Modus Ponens remains). Therefore,
depending on whether it is considered as a rule or as an axiom, and depending
also on whether equality is taken as primitive or not, different versions of
extensionality are conceivable (note that ‘�’ has no effect in Ł2):

�
Ext : x =. y � x

.= y
�
Ext

� : � ∀x∀y(x =. y → x
.= y)

Ext : x =. y � x = y Ext
� : � ∀x∀y(x =. y → x = y).

In order for = to bear the title of equality, it is to be required that it be
so interpreted in any structure as to guarantee the principle of substitutivity

(again, either as a rule or as an axiom scheme). This can be met by simply
defining the truth function of = on any structure by =U ‘(u, v) := 1 if and only
if u = v in U , and =U ‘(u, v) := 0 otherwise. Incidentally, it was noticed in [10]
that this strict interpretation will never yield a model of Comp[L ] + Ext

�.
A more reasonable definition of the equality relation in a structure may be
any one such that =U ‘(u, v) = 1 if and only if u = v in U , and that is all,
for this suffices to ensure that = has the substitutivity property (but as a
rule, not as an axiom scheme actually). Any structure equipped with such
an interpretation of = will be said to be normal. In that case, it is easy to
see that [[·]]U is injective if and only if U is extensional in the sense of Ext.
This latter shall henceforth be our preferred version of extensionality.

Accordingly, the universe U of any extensional normal structure U may
be identified with a (proper) subset of (U → T ), namely the range of [[·]]U ,
so that U now appears as a solution to U � [U → T ], where [U → T ] is a
suitable set of functions U −→ T , or say, a set of suitable functions U −→ T .
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Of course, because of Cantor’s theorem, not every function U −→ T is
suitable. Worse, even some simple propositional truth-functions may not be.
As we shall now see, only truth-functions having fixpoints are welcome.

3.6 The fixpoint property

Let A(·) be any propositional function in one variable, and let α : T −→ T

denote its truth-function. Now suppose we are given a set-theoretic structure
U in which ‘{x | A(x ∈ x)}’ has an interpretation, say a ∈ U . Then we must
have |a ∈ a|U = |A(a ∈ a)|U = α(|a ∈ a|U ), showing that α : T −→ T has a
fixpoint, namely |a ∈ a|U . We shall refer to this as the fixpoint property. It
follows therefrom that if ever U |= Comp[L ], then any propositional truth-
function α : T → T must have the fixpoint property.

In the case of Łn, n � 2, not every propositional truth-function can have
the fixpoint property. An example was actually provided in the proof of
Moh Shaw-Kwei’s paradox. Indeed, just take α(x) := x→n⊥. A simple
computation shows that α(x) = min�T

{1 , n(1− x)}, from which it is easily
seen that α has no fixpoint on In.

On the other hand, in the case of Ł∞, the fixpoint property is fulfilled.
For we noticed in 3.3 that the truth-functions of the logical connectives and
quantifiers of Ł∞ are continuous, and then so is any truth-function α : I −→ I

defined from these. Now, by Brouwer’s theorem, any such α has a fixpoint. It
is then not surprising that the Brouwer fixpoint theorem was involved in the
first attempts to provide a model of Comp[L ] in Ł∞. Broadly, this example
would even suggest that continuity, in a very comprehensive manner as we
shall see, might be regarded as a safety property against the paradoxes.

3.7 White’s solution

The use of an abstractor within a many-valued framework is conceivable too.
And it was precisely by using an abstraction operator, and by a proof-theoretic

method in fact, that Skolem’s conjecture was finally established much later by
White in 1979 ; see [41]. What was actually proved therein is the consistency
of Abst[Lτ ∗] in Ł∞. It was noticed by the author himself that his system is too
weak in order to develop classical first-order number theory inside. He also
showed that �Ext� cannot be consistently added, but we ignore whether �Ext

can be. In fact, it is still not known whether Comp[L ] + Ext is consistent.
If so, any semantic proof showing the existence of natural models would be
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welcome in that such models would give rise to a full universe of fuzzy sets.4
We now leave the consistency problem of the full comprehension scheme

in Ł∞, and concentrate on the one of some syntactical fragments of it in
Ł3 and Ł2, as initiated by Skolem in [36, 37, 38]. Although the use of set
abstracts in the language was again salutary to prove their consistency, we
are going to see that it can also be fatal to extensionality in the presence of
equality in formulas defining sets.

3.8 Abstraction and extensionality
Assuming extensionality, set abstracts can be eliminated. But in doing that,
some undesirable connectives may sneak in by the back door. This is partic-
ularly well illustrated by the rule R2 stated in 2.1:

τ = ‘{x | ϕ(x)}’ ⇔ ∀z(z ∈ τ ↔ ϕ(z)) ,

the following instance of which is still more eloquent

‘{x | ⊥}’ = ‘{x | ϕ(x)}’ ⇔ ∀z(⊥ ↔ ϕ(z)) ⇔ ¬ϕ (†).

Now it is easily proved that, assuming Ext, the Russell set can be defined
in Ł2 without negations or implications, simply by using set abstracts and
equality in the language. This results in the key observation that follows:

Fact 3.8.1. Abst[Lτ
+] is incompatible with Ext

Proof. Assume Abst[Lτ
+] and define r := {x | {z | x ∈ x} = {z | ⊥}}.

Assuming Ext, it follows from (†) that r = ‘{x | x /∈ x}’. �

This sort of ‘paradoxes’ first appeared in Gilmore’s work on partial set
theory [19].5 It should be remarked that the Russell set is no longer contra-
dictory in Gilmore’s set theory. What was showed in [19] is that, within an
extensional universe, a substitute for it can be defined by using set abstracts
and equality in the language, in a similar (yet more subtle) manner as above.

Although his motivations were elsewhere, that work by Gilmore could
have equally been expressed within the 3-valued Łukasiewicz logic. As a
matter of fact, Brady in [8] directly adapted Gilmore’s technique to Ł3 to

4 So far we have only obtained partial results, comparable to those of [10] & [15], by
using techniques described in [4]. This should be discussed elsewhere.

5 It is worthy of note that Gilmore’s work was first publicized in 1967, but the incon-
sistency of extensionality only appeared in 1974.
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much strengthen Skolem’s initial result, showing the consistency of an ab-
straction scheme in that logic, but without equality in the language (as in
Skolem). By this mere fact, however, a significant departure in [8] is that the
author succeeded in proving that his model is extensional, and thus, though
he was not aware of that,6 he actually proved a complementary result of
Gilmore’s. Namely, one can recover extensionality by dropping equality out
of formulas defining sets.

To clearly express those results of Gilmore and Brady, let Lτ
�→ stand

for the set of Lτ -formulas containing no occurrences of →. Notice that this
restriction is meaningful in view of Moh Shaw-Kwei’s paradox. Then we have

Theorem ([19]).
Abst[Lτ

�→] is consistent in Ł3, but inconsistent together with Ext.

Theorem ([8]).
Abst[Lτ

�→
∗ ] + �Ext is consistent in Ł3.

We mention here that similar results apply as well to the paraconsistent

counterpart of Ł3, the quasi-relevant logic RM3 (e.g. in [9]). For a survey of
the paraconsistent approach, we refer the reader to [27].

Before Gilmore/Brady’s method, Skolem had built extensional models of
a comprehension scheme in Ł3 restricted to formulas not containing any oc-
currence of →, but not any quantifier either (and without equality in the
language). In fact, his technique of proof in [36, 37] cannot be extended in
order to handle quantifiers. But Skolem showed in [37] that it can be adapted
to Ł2, initiating by the way, as far as we know, the consistency problem for
positive comprehension principles. Moreover, he presented different tech-
niques in [37] and [38], one of which finally led him to prove the consistency
of Comp[L +

∗ ]+Ext (see [38], Theorem 1). The model he discovered is going
to be further analyzed in Chapter 5, where all its secrets will be revealed.

Without any references to Skolem, the consistency problem for positive
comprehension principles was reinvestigated and invigorated much later in
the eighties, where it would seem to have his source in Gilmore’s work pre-
cisely; see [21] & [17]. Then it is not surprising that similar results to those
stated for Ł3 could be proved for Ł2.

Theorem ([21]).
Abst[Lτ

+] is consistent in Ł2, but inconsistent together with Ext.

Theorem ([24]).
Abst[Lτ

+
∗ ] + �Ext is consistent in Ł2.

6 Cf. previous footnote.
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But here much more interesting extensional models were actually discov-
ered in order to recover equality in formulas defining sets, and thus by giving
up the use of set abstracts.

Theorem ([17]).
Comp[L +] + Ext is consistent in Ł2.

We also mention that the technique used to construct them was subse-
quently adapted by Hinnion in [23] to the partial and the paraconsistent
cases with different success (see also [28, 27] for the paraconsistent version).

The rest of this chapter is in a sense devoted to showing how such models
can be obtained. To proceed, we first have to point out the guiding idea,
which was already subjacent in the original work of Skolem.

3.9 A particular case of continuity
The key step in Skolem’s proofs of the consistency of a comprehension scheme
in Ł3 and Ł2 (see [36] and [37]) is again the observation that the truth func-
tions of formulas defining sets have the fixpoint property. Of course, as the
set of truth values is discrete, it is no longer possible to invoke Brouwer’s the-
orem to see that. As a matter of fact, Skolem contents himself in [36] with
noticing that there are exactly eleven propositional truth-functions in one
variable constructible in Ł3 without using →, and that each of them really
has a fixpoint. In [37] a similar remark for positive formulas is applied to Ł2.
Although this was not noticed by Skolem, it is another famous fixpoint the-
orem that is hidden behind these observations, namely the Knaster-Tarski

theorem for ordered sets, on which we shall now dwell.
We would remind the reader that a particular case of continuity is mono-

tonicity. For it is well known that if any (partially) ordered set is endowed
with the topology for which the open subsets are just the upper sets, i.e.,
A is open if and only if x � a ∈ A ⇒ x ∈ A, then the continuous functions
are exactly the monotone ones. This technically convenient topology is re-
ferred to as the Alexandroff topology. It may be defined on any preordered

set actually, and it is easily characterizable as we shall see later in 4.7.
Now it turns out that the ordered sets on which any continuous/monotone

function has a fixpoint are identifiable. These are the dcpo’s.
We say that an ordered set U is directed complete, or a dcpo for short,

if any directed subset of U has a least upper bound, denoted by A; where
D ⊆ U is said to be directed if D �= ∅ and for any a, b ∈ D, there exists c ∈ D

with a, b � c. If in addition ∅ exists, that is to say, if U has a least element,
then we say that U is a pointed dcpo (some authors use the term cpo).
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Any complete ordered set is obviously a pointed dcpo, and the relevance
of this notion lies in the following important theorem, which is in fact the
best refinement of Tarski’s original version for complete lattices:

Theorem (Knaster-Tarski).
Let U be a pointed dcpo and let f : U −→ U be monotone. Then Fix(f),
the set of all fixpoints of f , is itself a pointed dcpo. Consequently, f has a

(least) fixpoint. Moreover, if U is a complete lattice, so is Fix(f).

We denote the least fixpoint of f by µ(f). Using the machinery of ordi-
nal numbers, µ(f) can be reached inductively by iterating f from the least
element of U (whereas the existence of maximal ones relies on Zorn’s lemma,
unless U is a complete lattice or is finite, of course).

To complement the Knaster-Tarski theorem, it has been shown that a

(pointed) ordered set on which any monotone function has a fixpoint is nec-

essarily a dcpo. This is, by far, much more difficult to prove (see [1] for
references).

Now, we remark that any of the In’s or I, with the truth ordering �T ,
is a pointed dcpo; and it is easily seen that all connectives and quantifiers
except negation and implication are monotone - whereas we would remind
the reader that all were continuous with respect to the usual topology on I.
Of course, if both negation and implication are rejected, there is absolutely
no need to add some imaginary truth-values, so this only makes sense for Ł2,
which incidentally is the strongest logic in the family.

In the case of Ł3, however, the set of truth degrees may be equipped with
another ordering, the so-called knowledge/information ordering �K , which
comes from the various attempts to explain the middle value 1

2 as ‘unknown’,
‘undefined ’, ‘undetermined ’, ‘possible’, or whatever expressing in some sense
a lack of truth value. Pictorially:

0 = {false} {true} = 1
� �

1
2 = { }

The partially ordered set ‘�� ’ thus defined is actually the simplest ex-
ample of a pointed dcpo that is not a chain. With respect to this ordering,
it is readily seen that all connectives and quantifiers except implication only

are monotone. It follows from the Knaster-Tarski fixpoint theorem that any
truth-function that is not defined by means of → has the fixpoint property.
Thus we may trace back the embryonic use of this theorem in semantic con-
sistency proofs to Skolem’s papers.
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3.10 Kripke-style models
Interestingly it is again the same theorem that is implicitly invoked, but at
another level, in Gilmore and Brady’s work in providing their term models.

Roughly, the universe of these models is fixed in advance and made of
set abstracts, regarded as syntactical expressions of the form {x | ϕ} for
suitable formulas ϕ (e.g. Lτ

+
∗ , Lτ

�→
∗ ); and then, by a fixpoint argument, the

membership relation is determined inductively in such a way that {x | ϕ} be
a solution to the ϕ-instance of the abstraction scheme under consideration.

This so-called inductive method was later popularized by Kripke [25] in
his work on the liar paradox. For a comprehensive description and analysis
of the connection between these works, we may refer the reader to [14].

We will see the inductive method in action in Chapter 6 where we review
and complete the results in [24].

Let us here sing the praises of another useful technique which has its
source in Scott’s seminal work on the λ-calculus. As anyway we will need
some basic facts about dcpo’s in this thesis, we first supply the reader with
a few prerequisites, referring systematically to [1] for more complete treat-
ments.

3.11 Addendum on dcpo’s
Dealing with dcpo’s, it is natural to be concerned with those monotone func-
tions that preserve suprema of directed subsets. Let U, V be dcpo’s. We say
that a function f : U −→ V is Scott-continuous if and only if f is monotone
and for all directed subset D ⊆ U , we have f ‘ D = f“D. (Note that
Scott-continuous functions need not preserve least elements when they ex-
ist.) The relevance of this notion lies in the fact that, for a Scott-continuous
function f on a pointed dcpo, ω steps (at most) are enough to reach µ(f).

We write �U → V � for the set of all Scott-continuous functions U −→ V .
It is easy to see that �U → V �, equipped with the pointwise ordering, is
itself a dcpo, and then that µ : �U → U� −→ U is Scott-continuous. We let
DCPO stand for the category of dcpo’s with Scott-continuous functions as
morphisms, and we refer the reader to [1] for any property of DCPO we shall
mention and use without proof. Notice in particular that it is shown in [1]
that DCPO is cartesian closed, the exponential of which being just �·→ ·�.

The appropriate topology for a dcpo is called the Scott topology ; this is
coarser than the Alexandroff one. Given a dcpo U , we say that A ⊆ U is
Scott-open if and only if A is an upper set and for any directed set D ⊆ U ,

D ∈ A ⇒ D∩A �= ∅ ; and thus we say that B ⊆ U is Scott-closed if and only
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if B is a lower set and for any directed set D ⊆ U , D ⊆ B ⇒ D ∈ B. It is
now easily seen that the Scott-topologically-continuous functions are exactly
the Scott-continuous ones as defined above. It is also apparent that A ⊆ U

is Scott-open if and only if ıU ‘A : U −→ 2 is Scott-continuous, where 2 is
equipped with its natural truth ordering (i.e. 0 < 1). Likewise, one can see
that B ⊆ U is Scott-closed if and only if ıU ‘B : U −→ 2∗ is Scott-continuous,
where 2∗ is the order dual of 2 (i.e. 1 < 0). Obviously 2 ∼= 2∗, but this will
result in some schizophrenia, as we shall see in Chapter 5 notably.

3.12 Scott-style models

In providing models for the untyped λ-calculus, Scott discovered that the
Knaster-Tarski theorem is reflected within suitable subcategories of DCPO .

Roughly, it was proved that for a wide variety of functors F(·) acting on
those categories, the reflective equation U ∼= F(U) has a least solution (ob-
tained by inverse limit). Such fixpoints have naturally proposed themselves
as semantic domains of programming languages, so the mathematical branch
in theoretic computer science that investigates this is called domain theory.
We again rely on [1] for proofs and further motivation.

Let T stand in what follows for I2 (= 2) with the truth ordering �T , or
for I3 with the knowledge ordering �K , both of which, we recall, are dcpo’s.

It is very tempting, by using techniques of domain theory, to try to solve a
reflexive equation of the form U ∼= F(U) ⊆ [U → T ], where this latter is the
set of all monotone functions U −→ T (which is a dcpo as well). Any fixpoint
solution U to such an equation will thus give rise to a set-theoretic universe in
which sets are conceived of as some special but monotone functions U −→ T .
Therefore, by virtue of the monotonicity of the connectives and quantifiers,
and for a suitable choice of F(·), such a U may seem to be a good candidate
for an extensional normal model of Comp[L +] when T is �I2; �T �, or of
Comp[L �→] when T is �I3; �T �.

However attractive this idea is, it will not enable us to recover equality
in formulas defining sets. This is because =U is not monotone on a normal
structure U . Let us illustrate this with the two-valued case. We may assume
that U is a pointed dcpo and that |U | > 1, so that there do exist distinct u, v

in U such that u �U v.7 Now, if =U : U × U −→ 2 was monotone, then we
should have =U ‘(u, u) �T =U ‘(u, v), which is impossible since =U ‘(u, u) = 1
and =U ‘(u, v) = 0. A similar argument applies to the 3-valued case.

7 This follows from the fact that U is a solution in DCPO to U ∼= F(U) ⊆ [U → T ].
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Equality is still missing, but the idea remains appealing in that it could
then serve to provide natural models of Comp[L +

∗ ] or Comp[L �→
∗ ].

Surprisingly it turns out that the least solution U to U ∼= �U → 2� is just
one of the twin models of Comp[L +

∗ ] given by Skolem in [37, 38]. This is
going to be proved in Chapter 5, where it is further shown that U is actually
a model of Abst� [Lτ

+
∗ ] + Ext. The other twin model can be obtained as

the least solution to U ∼= �U → 2∗�. Of course, these are isomorphic as
dcpo’s (because 2 ∼= 2∗), but not as set-theoretic structures (for the Scott-
isomorphisms [·]U differ). As a matter of fact, topologically speaking, in the
one the collectable subsets are just the Scott-open subsets, whereas in the
other these are the Scott-closed ones, whereby we thus establish in Chapter
5 the existence of topological models of positive abstraction.

Such an attempt for the 3-valued case is largely explored in [5], but with
little success. Nevertheless, the authors finally show that the structure so
constructed contains a model of ‘rough set theory ’ within its maximal ele-
ments (see also [6]). As we shall see in Section 4.7, this is another (very
different) example of topological model actually.

It should also be remarked that, curiously, the 3-valued paraconsistent
approach has proved more successful than the 3-valued paracomplete one. We
may again refer the reader to [27] for a sketchy analysis of that asymmetry.

3.13 The solution
Topological considerations have thereby come on. And now we have some
examples of topological models U satisfying U ∼= Pop(U) /U ∼= Pcl(U), the
question as to which of these, if any, may suit our purposes best is legitimate.

Clearly, if our goal is to recover identity in formulas defining sets, only
those that are solution to U ∼= Pcl(U) are worth being sought after, but then
within categories of, at least, T1-spaces, which dcpo’s are not.

As any deep piece of work, Scott’s has been a source of inspiration. Thus,
it was shown in [4] that another famous fixpoint theorem involving continuous

functions is also reflected within some suitable category. This theorem is
Banach’s for contracting functions on complete metric spaces, cms for short,
which too have been successfully used in modelling programming processes.8

Now, by using the technique described in [4], it is proved that the reflexive
equation U ∼= Pcl(U) has a unique (up to isomorphism) solution among
cms’s, which are T2-spaces. This solution is just the space Nω we mentioned

8 Recently, the framework of so-called ‘continuity spaces’, a common refinement of par-
tially ordered sets and metric spaces, has been proposed to develop a general theory of
semantics domains. The interested reader is referred to [16].
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in Section 2.4, which, as said, turns out to be a model of Comp[L [+]] +Ext.
The equality relation makes hereby its entrance in formulas defining sets
within an extensional universe; and as in Ł2 this entrance coincides with the
one of =. , some bounded quantifications had anyhow to come along with. It
is then not surprising that Nω fulfils Comp[L [+]], and not only Comp[L +].
Besides, as stressed in Section 2.3, L [+] is not an unnatural class of formulas.

We thus have related the emergence of a natural topological solution to
‘the consistency problem for positive comprehension principles’, which, as
we saw, originated in the use of ‘deviant’ logics. Note that Nω is actually
the simplest member of a family of topological solutions whose existence was
established in [17] (relying on some large cardinal assumptions, and without
any reference to [4]). These structures, subsequently called hyperuniverses,
have extensively been studied by Forti, Honsell and Lenisa in several papers,
e.g. in [18], where the authors even proposed hyperuniverses as an universal
framework for investigating the semantics of programming languages.

In such topological models the collectable subsets are just the closed ones.
Thus, even though not every class can define a set, each class in such models
may, at least, be optimally approximated by the smallest set containing it.
This alternative proposal was the core of Weydert’s thesis [40], in which
the author was independently led to proving the existence of hyperuniverses.
Note that the constructions given in [17] and [40] were actually both inspired
by the pioneer work of Malitz [30]; see [17] for an historical account.

Such an idea of approximation of the full comprehension scheme was
originally considered by Skala in [34], and then refined by Manakos in [31].9
Although semantic proofs of the consistency of (some extensions of) Skala’s
theory appeared in [33], [39] and [20], it seems that no topological attempt
to characterize the models has been made. So in the next chapter we revisit
Skala’s topological set theory on both the axiomatic and semantic sides.

9 Skala’s paper is cited in the references of [40], and even in those of [30], but with no
further comment.



Chapter 4

ON TOPOLOGICAL SET THEORY

We review and resume the results in [34] & [31] so as to give new insights
into them. In most cases the proof is just routine but is not omitted for all
that. Our most significant results are Theorem 4.5.4 - a negative one - and
Theorem 4.6.5 - a rather positive one.1 Both follow from a straightforward
topological characterization of the models of the theories considered in [34]
& [31]. This seems not to have been noticed before. The content of this
chapter is recapitulated in [13]. Note that Extensionality is tacitly assumed
throughout this chapter, and that a set-theoretic structure U is looked at as
�U ; [·]U �. It is also worth remembering the abbreviations given in Section 2.1.

4.1 The closure scheme
We are interested here in any extensional set theory based upon the following
approximation scheme:

(✸) :
For every formula ϕ(x),
∃y(∀x(ϕ → x ∈ y) ∧ ∀z(∀x(ϕ → x ∈ z) → y �. z)).

In words, (✸) asserts the existence for every formula ϕ(x) of a least set
containing ‘{x | ϕ(x)}’. We denote this (unique) set by {x |✸ ϕ}.

If {x |✸ ϕ} = ‘{x | ϕ(x)}’, we shall say that ϕ is continuous w.r.t. x.
Note that we will use that terminology in (✸)-free context as well, so that
ϕ is continuous w.r.t. x simply means that ‘{x | ϕ(x)}’ is a set. A central
question is then to know which formulas can be continuous, and in a type-free
setting this may be split up into two parts, not independent of each other:
which atomic formulas can be continuous, and which logical connectives can
preserve the continuity of a formula; these will be said to be continuous too.

Assuming (✸), x = x, p = p, and � are equally continuous w.r.t. x; they
all define the universal set V. Notice also that x ∈ p is clearly continuous

1 This latter in particular is due to Olivier Esser.
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w.r.t. x, seeing that {x |✸ x ∈ p} = p. The continuity of p = x w.r.t. x is
equivalent to the axiom (A ), and the one of p ∈ x is (B). These are going
to be largely discussed. Finally, x ∈ x may be continuous w.r.t. x only if ¬
is not continuous. And, of course, that ¬ preserves continuity is just (C ).

It is easy to see that ∧ and ∀ are continuous under (✸) once we notice that
this latter is equivalent to the following scheme of definable intersections:

(∩δ) :
For every formula ψ(z),
∃y∀x(x ∈ y ↔ ∀z(ψ → x ∈ z)).

We denote this unique set y by ‘{z | ψ(z)}’.

Proposition 4.1.1. (✸) ⇔ (∩δ).

Proof.

⇒ : ‘{z | ψ(z)}’ = {x |✸ ∀z(ψ → x ∈ z)}.
⇐ : {x |✸ ϕ} = ‘{z | ∀x(ϕ → x ∈ z)}’. �

Corollary 4.1.2. Under (✸), ∧ and ∀ preserve the continuity of a formula.

Proof. Assume (∩δ) and suppose that ϕ(x, y) is continuous w.r.t. x. From
‘{x | ∀yϕ(x, y)}’ = ‘{z | ∃y(z = ‘{x | ϕ(x, y)}’)}’ it follows that ∀yϕ(x, y)
is continuous w.r.t. x; and, obviously, that ∧ preserves continuity results in
the possibility of defining p ∩ q by ‘{z | z = p ∨ z = q}’. �

It is worth stressing that Proposition 4.1.1. shows that (✸) is just equiv-
alent to particular instances of comprehension. Namely, Comp[ϕ(x)] where
ϕ(x) is of the form ‘∀z(ψ → x ∈ z)’, for any L -formula ψ (with the proviso
that x does not occur free in ψ).

By a closure operator on D ⊆ P(U) we mean a ⊆-preserving application
(·)✸ : D −→ D such that A ⊆ A✸ and (A✸)✸ = A, for any A ∈ D.2 A subset
A of U is said to be closed if it lies in rng(·)✸, that is, if A✸ = A.

Given a structure U , we recall that def[·]U stands for the set of definable

subsets. What follows is an elementary characterization of the models of (✸).

Theorem 4.1.3. A set-theoretic structure U is a model of (✸) if and only if

there exists a closure operator (·)✸ on def[·]U such that rng[·]U = rng(·)✸.

Proof. �x | ϕ(x, v̄)�✸
U

= [{x |✸ ϕ}U(v̄)]U for any formula ϕ(x, p̄) and v̄ in U . �

2 When D = P(U), we usually say a closure operator on U .
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This simple observation will enable us to easily answer natural questions
on some extensions of (✸) we are going to consider. Still more useful for
constructing models is the second-order formulation of Theorem 4.1.3, in
which (·)✸ is now a closure operator on U and (✸) is replaced by ((✸)).3

In all the examples we consider, it is even the case that (·)✸ is the closure
operator associated with some (maybe trivial) topology on U , i.e. (·)✸ further
satisfies ∅✸ = ∅ and (A ∪ B)✸ = A

✸ ∪ B
✸, for any A,B ⊆ U . This is, of

course, what has motivated the title of this chapter. Notice that in such
circumstances, Λ exists and ∨ is continuous too. It thus remains to explore
(A ), (B), (C ) and the continuity of ∃ under (✸).

Remark 4.1.1. The second-order version of Proposition 4.1.1 is the translation
of the well-known correspondence between closure operators and (topped) in-
tersection structures, which are complete lattices. Then, given a set-theoretic
structure U , what follows is immediate.

Fact 4.1.1. If U |= ((∩δ)), then �U ; �. U
� is a complete lattice.

Proof. We observe that, for any A ⊆ U , A := ( ‘{z | z ∈ A}’)U is the
infimum of A in �U ; �. U�. �

We would just notify the reader that the converse of this does not hold.
The spine model(s) described in Chapter 5 will provide us with an illumi-
nating example. All we are able to say when �U ; �. U� is a complete lattice is
that, for any A ⊆ U , U |= ∀x(x ∈ A → ∀z(z ∈ A → z ∈ x)).

4.2 Duality
The previous considerations naturally prompt us to examine the symmetric

approach, according to which each class can be approximated from below.
There is a priori no reason to prefer one view to the other. Besides, both
views might equally well be taken simultaneously, which is going to be ex-
amined in the next sections.

The dual version of the approximation scheme (✸) is defined as follows

(✷) :
For every formula ϕ(x),
∃y(∀x(x ∈ y → ϕ) ∧ ∀z(∀x(x ∈ z → ϕ) → z �. y))

and the unique y given by (✷) is designated by {x |✷ ϕ}.
3 In the sequel, whenever we look at the second-order version of an axiom scheme, it

will be designated with double parentheses ‘(( ))’.



38 Chapter 4. On Topological Set Theory

The scheme of definable intersections is now to be replaced by the one of
definable unions :

(∪δ) :
For every formula ψ(z),
∃y∀x(x ∈ y ↔ ∃z(ψ ∧ x ∈ z))

and we denote this y by ‘{z | ψ(z)}’.

Proposition 4.2.1. (✷) ⇔ (∪δ).

Proof.

⇒ : ‘{z | ψ(z)}’ = {x |✷ ∃z(ψ ∧ x ∈ z)}.
⇐ : {x |✷ ϕ} = ‘{z | ∀x(x ∈ z → ϕ)}’. �

Corollary 4.2.2. Under (✷), ∨ and ∃ preserve the continuity of a formula.

In the same way, one could give a characterization of the models of (✷)
in terms of interior operators. We would leave this to the reader.

Naturally, from the semantic point of view, this duality just consists in
taking the complement: we define the dual Uc of a set-theoretic structure U
to be �U ; U × U \∈U�, so that U |= (✸) / (✷) if and only if Uc |= (✷) / (✸).

Assuming (C ), the duality is still more obvious on the axiomatic side.

Proposition 4.2.3. (✸) + (C ) ⇔ (✷) + (C )

Proof. {x |✷ ϕ} = C ({x |✸ ¬ϕ}) and likewise by interchanging ✸ and ✷. �

Surprisingly enough, if one is considering (A ), the symmetry is broken:

Fact 4.2.1. (✷) ⇒ non(A ), whereas (✸) + (A ) is consistent.

Proof. Using (∪δ), we define r := ‘{z | ∃w(z = A (w) ∧ w /∈ w)}’. Clearly,
we have r ∈ r → r /∈ r, and if A (r) existed, we would too have r /∈ r → r ∈ r.
For the consistency of (✸) + (A ), we rely on the existence of Nω. �

Despite the loss of singletons, we are going to be interested in any possible
set theory based upon both (✸) and (✷). This was initiated in [34], where (C )
is taken too, and then reinvestigated in [31] without assuming (C ) anymore.
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4.3 The comprehension scheme revisited
By taking (✷), we must give up (A ). Nevertheless, we may use (✸) to define
what we call pseudo-singletons or molecules (as named in [31]). By definition,
the pseudo-singleton of p is the smallest set containing the singleton of p, that
is, {x |✸ p = x} = B(p), and this is nothing but M (p).

Proposition 4.3.1. (✸) + (✷) ⇔ (M ) + (✷).

Proof.

⇒ : Obvious.
⇐ : For any formula ϕ(x), {x |✸ ϕ} = ‘{z | ∃w(z = M (w) ∧ ϕ(w))}’. �

The right to left part of the proof is interesting in that it shows that
{x |✸ ϕ} = ‘{x | ∃w(w �̇ x ∧ ϕ(w))}’, which leads to defining the scheme

(�) :
For every formula ϕ(x),
∃y∀x(x ∈ y ↔ ∃w(w �̇ x ∧ ϕ(w)))

and then proving that

Proposition 4.3.2. (�) ⇔ (✸) + (✷).

Proof.

⇐ : y = {x |✸ ϕ}
⇒ : If ϕ(x) is taken to be ∃z(x ∈ z ∧ψ(z)) in (�), what we get is just (∪δ).
And if ϕ(x) is taken to be x = p , we have (M ). �

The axiom scheme (�) should not leave the reader indifferent, for if �̇
was the equality - which is the case when (A ) holds (cf. Fact 2.1.1) - it
would be nothing but the full comprehension scheme. But that one would
be willing to sacrifice (A ) just because (�) is provably consistent would
hardly be arguable in view of what follows.

Given a preorder R on a set U , we denote by (·)R the closure operator
on U that is defined by A

R := R“A ; and then, for any D ⊆ P(U), we let
D
↑ stand for {AR | A ∈ D} and D

↓ for {AR−1 | A ∈ D}.
Given a set-theoretic structure U , �̇U is a preorder on U , and as it is

definable, we have def[·]↑
U
⊆ def[·]U and def[·]↓

U
⊆ def[·]U , so that (·)�̇U is in

particular a closure operator on def[·]U .
We are ready to formulate the semantic counterpart of Proposition 4.3.2.

Theorem 4.3.3. A model U of (✸) is a model of (✷) if and only if the

closure operator (·)✸
given by Theorem 4.1.3 coincides with (·)�̇U , and thus

rng[·]U = def[·]↑
U
.
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Proof. Assuming (✸), we have seen that {x |✸ ϕ} = ‘{x | ∃w(w �̇ x ∧ ϕ(w))}’
if and only if (✷) holds. �

Note that in any case, if (·)✸ was of the form (·)R for some preorder R on
U , this should be �̇U :

Proof. Suppose u �̇U v. As {u}R is closed, there exists w ∈ U such that
[w]U = {u}R, and then, as u ∈ {u}R, that is, u∈U w, we get v ∈U w, that
is, v ∈ {u}R. Whence u R v. Conversely, suppose u R v and let w ∈ U

such that u∈U w, that is, u ∈ [w]U . Now, as u R v and [w]U is closed, i.e.
R“[w]U = [w]U , we have v ∈ [w]U too, that is, v ∈U w. Therefore u �̇U v. �

We thus may state the second-order version of Theorem 4.3.3 as follows

Theorem 4.3.4. A set-theoretic structure U is a model of ((�)) if and only

if there exists a preorder R on U such that rng[·]U = P(U)↑. In that case, R

must coincide with �̇U .

With this, it is rather child’s play to concoct models of ((�)), and in
particular finite ones, which would testify of the insignificance of (�) as a
set theory on its own. Incidentally, there was no need to invoke Theorem
4.3.4 to prove its consistency, as ‘{Λ, V}’ is obviously the simplest model,
and this is also a model for the situation we examine hereafter.

4.4 The symmetric case
Without further assumptions, all the properties that �̇ is certain to possess
are reflexivity and transitivity. According to Fact 2.1.1, when (A ) fails,
�̇ may be thought of as a reminiscence of the equality. Then it would be
legitimate to require the symmetry of �̇. Under (�), this actually amounts
to demanding that the negation preserves the continuity of a formula.

Proposition 4.4.1.

i) (C ) ⇒ (x �̇ y → y �̇ x).

ii) Assuming (�), (x �̇ y → y �̇ x) ⇒ (C ).

Proof.

i) Suppose x �̇ y. If x /∈ z, then x ∈ C (z), and so y ∈ C (z), that is, y /∈ z.
ii) Suppose that (x �̇ y → y �̇ x). We show that {x |✸ x /∈ p} = C (p).
Let x ∈ {x |✸ x /∈ p}. By (�), there exists w such that w �̇ x and w /∈ p.
Then x �̇ w and it follows that x /∈ p either, that is, x ∈ C (p). �
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To sum up, a model U of (�) satisfies (C ) if and only if �̇U is an equiva-
lence relation, namely .=U . Thence we can give the next useful characteriza-
tion which falls out of Theorem 4.3.4.

Theorem 4.4.2. A set-theoretic structure U is a model of ((�))+(C ) if and

only if there exists an equivalence relation R on U together with a bijection

f : U −→ P(U/R) such that [u]U = f ‘u for each u ∈ U . In that case, R

must coincide with
.=U .

Proof. Observe that (·)R-closed subsets are just unions of equivalences classes,
and thus we have to have f ‘u := {{v}R | v ∈ [u]U}, for any u ∈ U . �

The simplified version that follows speaks for itself:

Theorem 4.4.3. A set U is the universe of a model of ((�)) + (C ) if and

only if |U | = 2κ
, for some cardinal κ.

Proof.

Necessity: Follows directly from Theorem 4.4.2.
Sufficiency: Take any equivalence relation R on U such that |U/R| = κ, and
then any bijection f : U −→ P(U/R) to define [·]U as in Theorem 4.4.2. �

At least, in assuming (�)+(C ), all the basic logical connectives (¬,∧,∨, ∀,
∃) are continuous, but this results in serious drawbacks at the atomic level.
We already know that (A ) is incompatible with (�). It turns out that (B) is
also incompatible with (�)+(C ), and this can happen in a (�)-free context:

Fact 4.4.1. If ¬, ∧, ∃ are continuous, then (B) is inconsistent.

Proof. Under the assumptions, x �̇ y ≡ ¬∃z(x ∈ z ∧ y /∈ z) is continuous
w.r.t. x, and then, if we assume that y ∈ x is continuous w.r.t. x, so is
∃y(x �̇ y ∧ y /∈ x). Now, let r be the set defined by this formula. It is easy
to see that r ∈ r if and only if r /∈ r. �

Note that if the use of quantifiers is forbidden, this is no longer provable:

Fact 4.4.2. (B) is compatible with the use of ¬ and ∧ in formulas defining

sets.

A proof of this can be found in Skolem’s paper [38] (Theorem 2, p. 165).

Thus (A ), (B), and obviously (W) are all incompatible with (�) + (C ).
Note incidentally that we are going to show in the next section that, as for
(A ), (B) is already incompatible with (�) alone (this is not immediate).

To conclude and summarize, the next result - which is not mentioned in
[34] or [31] - clearly states what the continuous formulas are under (�)+(C ).
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Theorem 4.4.4. (�) + (C ) ⇔ Comp[ϕ(x)] for any formula ϕ(x) in L∗
with the sole restriction that the abstracted variable x does not occur on the

right-hand side of ∈.

Proof.

⇒ : Follows from the continuity of all the logical connectives under (�) +
(C ), and the fact that the limitation to L∗-formulas and the restriction on
x prevent occurrences of p = x, p ∈ x, x ∈ x at the atomic level.
⇐ : Observe that ‘{z | ψ(z)}’ = ‘{x | ∀z(ψ → x ∈ z}’ is just defined by
such a suitable formula (note that as we assume extensionality, ψ can be
reduced to an L∗-formula by replacing any occurrence of = by =. ). Thus we
get ( δ). And that we have (C ) is still more obvious. �

It should be stressed that, as well as the absence of =, this simple restric-
tion on the abstracted variable has disastrous effects on the development of
set theory, as for instance it prevents us from defining the power-set of any
given set p , seeing that P(p) = ‘{x | ∀z(z ∈ x → z ∈ p)}’.

4.5 The antisymmetric case
The absence of (C ) seems to leave the door open to the continuity of x ∈ x

and p ∈ x w.r.t. x. In fact, that (W) is compatible with (�) is easily seen:
Example 4.5.1. Take U := {a, b, c} with R := U × U \{(b, a), (c, a)}, i.e.
{a}R = {a, b, c}, {b}R = {b, c} = {c}R (so R is neither symmetric nor an-
tisymmetric), and define [·]U as follows: [a]U := ∅, [b]U := {b, c}, [c]U := U .
Thus, U is a model of ((�)) in which a is Λ, b is W, and c is V. Notice that
both B(b) and B(c) exist and are equal to b, but B(a) does not exist in U .

Trying to find a model of (B) is directly a less obvious task for there is
no finite model of (B) (see Chapter 5). Under (�), the task will soon prove
vain. To proceed, we first point out the following result (to be compared
with Proposition 4.4.1).

Proposition 4.5.1.

i) (B) ⇒ (x �̇ y → x �. y).

ii) Assuming (�), (x �̇ y → x �. y) ⇒ (B).

Proof.

i) Suppose x �̇ y. If z ∈ x, then x ∈ B(z), and so y ∈ B(z), that is, z ∈ y.
ii) Suppose that (x �̇ y → y �. x). We show that {x |✸ p ∈ x} = B(p).
Let x ∈ {x |✸ p ∈ x}. By (�), there exists w such that w �̇ x and p ∈ w.
Then w �. x and it follows that p ∈ x too, that is, x ∈ B(p). �
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We are going to show that (x �̇ y → x �. y) is incompatible with (�).
In order to achieve this, we need a couple of lemmas.

Given a set-theoretic structure U , we say that a function f : U −→ P(U)
is definable if there exists an L -formula ϕ(x, y, p̄) and v̄ ∈ U such that for
all u ∈ U , f ‘u = �x | ϕ(x, u, v̄)�U .

Lemma 4.5.2. Let U be a set-theoretic structure. If there exists a surjective

definable function f : U −→ def[·]↑
U

such that u �̇U v ⇒ f ‘u ⊆ f ‘v, then there

exists such a surjective definable function g : U −→ def[·]↓
U

Proof. We define g‘u for any u ∈ U by U \ {f ‘w | w /∈ f ‘u}, that is, for all
x in U , x ∈ g‘u ⇔ ∀w ∈ U (x ∈ f ‘w → w ∈ f ‘u). Therefrom it is easy to
see that g : U −→ def[·]↓

U
is definable and satisfies u �̇U v ⇒ g‘u ⊆ g‘v. It

remains to show that g is surjective. Take A ∈ def[·]↓
U
. Clearly, U \A ∈ def[·]↑

U
and so, as f is surjective, we can choose b ∈ U such that f ‘b = U \A. Set
B := {b}�̇U . As B ∈ def[·]↓

U
, we have U \B ∈ def[·]↑

U
, and so, again, we

can choose a ∈ U such that f ‘a = U \B. Now, we do have g‘a = A, for
{f ‘w | w /∈ f ‘a} = {f ‘w | w ∈ B} = {f ‘w | w �̇U b} = f ‘b = U \A. �

Lemma 4.5.3. Given a set-theoretic structure U , there is no surjective de-

finable function g : U −→ def[·]↓
U

such that u �̇U v ⇒ g‘u ⊆ g‘v.

Proof. Let g be as above. Define R = {u ∈ U | u /∈ g‘u}�̇U . Clearly,
R ∈ def[·]↓

U
and so there exists r ∈ U such that g‘r = R. If we had r /∈ R, we

would too have r ∈ R by definition of R. Whence r ∈ R. But then there exists
u0 ∈ U such that u0 /∈ g‘u0 and r �̇U u0. From this latter we get g‘r ⊆ g‘u0,
and thus, as u0 ∈ R = g‘r, we have u0 ∈ g‘u0 as well. Contradiction. �

Theorem 4.5.4. (x �̇ y → x �. y) - and so (B) - is incompatible with (�)

Proof. For suppose there exists U which is a model of (�)+(x �̇ y ⇒ x �. y).
Then [·]U would be a surjective (definable) function U −→ def[·]↑

U
such that

u �̇U v ⇒ [u]U ⊆ [v]U , which is impossible in view of Lemmas 4.5.2–3. �

It does not seem possible to find a syntactical proof of Theorem 4.5.4.
Such a proof, however, can be given for a slight variant of it.

Proposition 4.5.5. (x �̇ y → y �. x) is incompatible with (�)

Proof. Let r be {x |✸ x /∈ x}, which, by (�), is ‘{x | ∃w(w �̇ x ∧ w /∈ w)}’.
Clearly r /∈ r → r ∈ r, so we must have r ∈ r. Then there exists w such
that w �̇ r and w /∈ w. If we assumed (x �̇ y ⇒ y �. x), it would result that
w /∈ r, which is impossible for w ∈ r (since w /∈ w). �
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We mention that the converse of (x �̇ y → x �. y) is obviously consistent
with (�), as it holds in the two-points models ‘{Λ, V}’ or even in the model
given in Example 4.5.1. But this is a rather odd principle, as, for instance,
it is apparent that ‘{Λ}’ cannot exist under (x �. y → x �̇ y), which would
not really speak for any set theory in which this latter holds. Nevertheless,
here is an example about which we should not be indifferent.

Proposition 4.5.6. Abst[Lτ
+
∗ ] + Ext ⇒ (x �. y → x �̇ y).

Proof. Assume Abst[Lτ
+
∗ ] and let p, q be such that p �. q but p ��̇ q. De-

fine σ(x) := {z | z ∈ p ∨ (x ∈ x ∧ z ∈ q)}. It easily follows from p �. q that
∀x((x ∈ x → σ(x) = q)∧(x /∈ x → σ(x) = p)) (Ext is needed for this). Now,
as p ��̇ q, let us choose r with p ∈ r, q /∈ r, and define ρ = {x | σ(x) ∈ r}.
Thus we have ∀x(x ∈ ρ ↔ x /∈ x), and therefore ρ ∈ ρ ↔ ρ /∈ ρ. �

Although we have assumed Ext throughout this chapter, it was important
to mention its use in Proposition 4.5.6, for otherwise one might have been
tempted to think that Abst[Lτ

+
∗ ] ⇒ (x =. y → x

.= y), which is false. As we
shall see in Chapter 6, there are term models for Abst[Lτ

+
∗ ] in which �

Ext

fails, as well as there are in which it holds, and the proof of this is particularly
not obvious. The consistency of Abst[Lτ

+
∗ ] + Ext will fall out more easily

of Chapter 5 in which we show that Abst[Lτ
+
∗ ] - and so (B) - is at least

compatible with (✸) and (✷) separately.

In assuming (B) (and Ext), �̇ is anti-symmetric, i.e. (x .= y → x = y).
It is then legitimate to enquire whether this natural principle could not be
compatible with (�). At least, it would prevent the existence of finite models.

Fact 4.5.1. Any model U of (Λ) + (M ) + (x .= y → x = y) is infinite.

Proof. Notice that x
.= y ⇔ M (x) = M (y) and that Λ = M (x) for no x.

Then it is clear that, under the assumptions, we can define a potentially
infinite sequence of elements in U by iterating M (·) from ΛU . �

The consistency of (�) + (x .= y → x = y) is raised and left open in [31].
By invoking Theorem 4.3.4, it is now fairly easy to give a positive answer.

Example 4.5.2. Take U := , R the usual ordering � on , and define [·]U
as follows: [0]U := ∅, [n]U := {m | n−1 � m}, for any n � 1. Thus it is clear
that rng[·]U is just the collection of (·)R-closed subsets of U , so U |= ((�)).
In U , 0 is Λ, 1 is V, and 2 is W, which shows that this latter can exist when
�̇ is antisymmetric. On the other hand, note that B(u) exists for no u in U .
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4.6 Normality
Assuming (✷), not every singleton can exist, so we shall say that a set x

is normal if ‘{x}’ exists. No surprises, as we show in this section, very few
things can be said about the class of normal sets, which is defined by

N := ‘{x | ∃y(y = A (x))}’ .

Proposition 4.6.1. ∃x(x /∈ N ).

Proof. Just a reformulation of the first part of Fact 4.2.1. �

On the other hand, ∃x(x ∈ N ) is not even derivable from (�) + (C ),
for in the two-points model ‘{Λ, V}’ we have N = Λ. As certified by this
example, it can be shown, at least, that N is always a set.

Lemma 4.6.2. For any formula ϕ(x), if z ∈ N and ϕ(z), then z ∈ {x |✷ ϕ}.

Proof. Suppose ϕ(z) and z ∈ N . Then, {x |✷ ϕ}∪A (z) is a set, and as we
have ∀x(x ∈ {x |✷ ϕ}∪A (z) → ϕ), it follows that {x |✷ ϕ}∪A (z) �. {x |✷ ϕ}.
Whence z ∈ {x |✷ ϕ}. �

Proposition 4.6.3. N is a set.

Proof. Take ϕ(x) to be ∃y(y = A (x)) in the previous lemma. �

Such a simple question as to know whether N ∈ N or not is undecidable.
In the two-points model, we have N = Λ, so that N /∈ N is consistent;
and by invoking Theorem 4.4.2, it is easy to concoct a model U of (�)+ (C )
in which, for instance, N = A (N ), so that N ∈ N is also consistent.

Example 4.6.1. Take U = {a, b, c, d}, with {d} and {a, b, c} as R-classes, and
with [a]U := ∅, [b]U := {a, b, c}, [c]U := U, [d]U := {d}. In U , d is N .

With the help of Lemma 4.6.2, we can also give an eloquent characteriza-
tion of abnormal sets. These are just tokens of the discontinuity of a formula,
in the following sense:

Proposition 4.6.4. z /∈ N if and only if there exists a formula ϕ(x) such

that ϕ(z) but z /∈ {x |✷ ϕ}.

Proof.

Necessity: Just take ϕ(x) to be z = x.
Sufficiency: Use Lemma 4.6.2. �
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Perhaps the most significant manifestation of the absence of control over
N is the following seemingly positive result, which states that N may be
taken to be any preexisting universe of normal sets (e.g. a model of ZF ).

Theorem 4.6.5. Let V be any infinite extensional set-theoretic structure

satisfying (A ). Then there exists a model U of ((�)) + (C ) such that:

(i) [·]V = [·]U restricted on V ;

(ii) V = {u ∈ U | U |= u ∈ N } ;

(iii) P(V ) ⊆ rng[·]U .

Proof. Let U be V ∪ V
� ∪ V

��, where V
� := P(V )\ rng[·]V and V

�� is any
set of cardinality 2|V |, and where we also assume that V, V

�
, V

�� are pairwise
disjoint. We now equip each of these with an equivalence relation: we define
S on V by V/S := {{v} | v ∈ V }, S

� on V
� by V

�
/S� := {V �}, and we take any

equivalence S
�� on V

�� such that |V ��
/S��| = |V | and |K| � 2, for all K ∈ V

��
/S�� .

Then we let R stand for the equivalence on U defined by S ∪S
� ∪S

��. Notice
that |U | = |P(U/R)| = 2|V |. Thus, if we set f ‘v := {{w} | w∈V v} for each
v ∈ V and f ‘W := {{w} | w ∈ W} for all W ∈ V �, then f can be so extended
over U as to define a bijection U −→ P(U/R). By invoking Theorem 4.4.2,
we can now turn U into a set-theoretic structure U |= ((�)) + (C ) by setting
[u]U := f ‘u for any u ∈ U . It remains to check that U satisfies (i), (ii), (iii).
For any v ∈ V , we have [v]U = {{w} | w∈V v} = {w | w∈V v}, and this is
just [v]V . In particular, since V |= (A ), we have {v} = [A V(v)]V = [A V(v)]U ,
which shows that U |= v ∈ N and that A U(v) = A V(v), for any v ∈ V .
Conversely, suppose U |= u ∈ N , that is, {u} = A for some A ⊆ U/R. If
we had A ∩ (V �

/S� ∪ V
��
/S��) �= ∅, we would have | A| � 2, for V

� is infinite
and |K| � 2 for any K ∈ V

��
/S�� . Therefore we must have A ⊆ V/S, and so

{u} ⊆ V . Finally, let W ⊆ P(V ). If W ∈ rng[·]V , then clearly W ∈ rng[·]U .
If W /∈ rng[·]V , W ∈ V �, and then [W ]U = f ‘W = W , so W ∈ rng[·]U . �

Has the scheme (�) + (C ) been to some extent salvaged by this result?
In view of the arbitrary nature of the model constructed in the proof, it
seems not. A possible way to try to define a notion of coherence in models of
(�) + (C ) is discussed in the next and last section, in which we summarize
the mathematical content of this chapter.

4.7 Coherence
Given a topological space U , we recall that Pcl(U) stand for the set of closed

subsets of U , and Pop(U) for the set of open ones.
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Clearly, according to the second-order version of Theorem 4.1.3 / its dual,
any topological space U such that U � Pcl(U) /U � Pop(U) gives rise to
a model of ((✸))/((✷)). Notice that the closure/interior operator attached
to a given model of ((✸))/((✷)) need not be topological. For our purposes,
however, we shall restrict ourselves to topological models. But even in that
case there are still many insignificant models of ((✸))/((✷)), in particular
finite ones. So in what remains of this chapter we shall rather be concerned
with topological models that are solutions to U ∼= Pcl(U) /U ∼= Pop(U)
within specific categories of topological spaces. Anyhow, as we aim to show,
the existence of such solutions is closely related to the consistency problem of
some natural extensions of ((✸))/((✷)). It may also be said that such solutions
U to U ∼= Pcl(U) /U ∼= Pop(U) define natural models for ((✸))/((✷)), in that
the extension function [·]U is to be not only a bijection but a homeomorphism,
which does guarantee that there is some coherence in the process of assigning
extensions to sets. It is understood here that Pcl(U) /Pop(U) has itself been
equipped with a natural topological structure derived from the one of U .

Alexandroff spaces

Any model of ((�)) is topological. This is a direct consequence of Theorem
4.3.4 which states that such a model appears as a preordered set �U ; R�
such that U � P(U)↑; and this latter is just Pop(U) when U is endowed
with the Alexandroff topology. Notice that, as P(U)↑ = P(U∗)↓ where
U
∗ is �U ; R−1�, any model of ((�)) may equally be viewed as a topological

solution to U � Pcl(U), where U is now endowed with the Alexandroff
topology of U

∗. This is what is implicit in Theorem 4.3.4, for (·)R is a
closure operator, not an interior one. Still, it is more natural to view P(U)↑

as Pop(U). The reason why is that then R - and so �̇U - coincides with
the so-called specialization preorder ✁U of the topology, which is defined
by u ✁U v ⇔ ∀A ∈ Pop(U)(u ∈ A → v ∈ A). This is also referred to
as the indiscernibility relation associated with the topology, for u �U v ⇔
∃A ∈ Pop(U)(u ∈ A∧ v /∈ A) ⇔ ‘u is discernible from v’, in topological terms.

It is clear that for any topological space U we have Pop(U) ⊆ P(U)↑,
where this latter is taken with respect to ✁U ; and then it is easy to see that
a topological space U will satisfy Pop(U) = P(U)↑ if and only if Pop(U)
is closed under taking arbitrary intersections, that is to say, if this latter
also defines the set of closed subsets for some topology on U . We call those
topological spaces Alexandroff spaces. Their topology is thus generated by a
preorder, which must coincides with the specialization preorder.

All that to say that a model of ((�)) is just a solution U to U � Pop(U)
within ALEX , the category of Alexandroff spaces. The Alexandroff-continuous
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functions are the functions that preserve the indiscernibility relation.
Given an Alexandroff space U , a possible way to transfer the indiscerni-

bility relation onto P(U), and thus to turn this latter into an Alexandroff
space, is by defining A ✁P(U) B if and only if A ⊆ B

✁U . The restriction
of this to Pop(U) = P(U)↑ is just the inclusion relation ⊆. In words, A is
discernible from B in Pop(U) if and only if there exists a ∈ A with a /∈ B.

We now remark that, with that topology on Pop(U), the equation U ∼=
Pop(U) is unsolvable within ALEX . The syntactical first-order translation of
this ‘Cantor’s theorem’ for ALEX is just the incompatibility of (B) with (�)
(cf. Theorem 4.5.4). Yet, the situation is by far less disastrous in ALEX than
in SET , for there are some (infinite) U here such that |Pop(U) \ rng[·]U | = 1.
This will be illustrated in Chapter 5 where we exhibit a solution to U ∼=
Pop(U) within SCOTT , the category of Scott spaces, which are just the dcpo’s
endowed with the Scott-topology. Notice that the specialization preorder of
a Scott-space coincides with the ordering of the corresponding dcpo.
Remark 4.7.1. Another possible way to make P(U) into a Alexandroff space
is by defining A ✁P(U) B if and only if B ⊆ A

✁U , which may even seem
more natural for then U −→ P(U) : u �−→ {u} is Alexandroff-continuous.
The restriction of this to Pop(U) is now the reverse inclusion ⊇, and that
U ∼= Pop(U) is still unsolvable within ALEX follows from Proposition 4.5.5.
Likewise, one can show that the equation U ∼= Pcl(U), whether this latter
is equipped with ⊆ or ⊇, is unsolvable within ALEX . Incidentally, a proof
of this in the case where Pcl(U) is equipped with ⊆ was originally given in
[11], where it was shown that, given an ordered set U , there is no surjective
monotone function U −→ P(U)↓ (a second-order version of Lemma 4.5.3).

Quasi-discrete spaces

If the specialization preorder of an Alexandroff space is symmetric, that is
to say, is an equivalence relation, we say that U is a quasi-discrete space.
It is very easy to see that a topological space U is quasi-discrete if and
only if Pop(U) = Pcl(U). In words, the topology of a quasi-discrete space
is generated by an equivalence relation: the open subsets, as well as the
closed ones, are just unions of equivalence classes. We call the category of
quasi-discrete spaces QUASI (this is a sub-category of ALEX ). According
to Theorem 4.4.2, a model of ((�)) + (C ) is just a solution U to U � Pop(U)
- equally U � Pcl(U) - within QUASI ; in such a U .=U coincides with ✁U .

Now, given a quasi-discrete space U , the appropriate way to enrol P(U)
in QUASI is by defining A ✁P(U) B if and only if A ⊆ B✁U and B ⊆ A✁U ,
i.e., if and only if A

✁U = B
✁U , which is thus an equivalence relation on P(U).

But the restriction of this to Pop(U)/Pcl(U) is the identity, so that, for more
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obvious reasons here, there is no solution U to U ∼= Pop(U)/U ∼= Pcl(U)
within QUASI , for such a U would be a model of (�)+(C )+(x .= y → x = y).
Remark 4.7.2. Referring back to Remark 2.3.1, it is easily seen that for a
set-theoretic structure U in QUASI , demanding that [·]U : U −→ P(U) be
continuous actually amounts to demanding that ✁U is a bisimulation.

Nevertheless, it is possible to define a consistent notion of coherence in
models of ((�)) + (C ). We shall say that a solution U to U � Pop(U)
within QUASI is acceptable if for any indiscernible u, v in U , that is, with
u ✁U v, either [u]U = [v]U = ∅ or [u]U ∩ [v]U �= ∅, which clearly vouches
for a certain coherence in the process of assigning extensions to sets. The
first-order translation of this condition on the axiomatic side is expressed by
(x .= y → x � y), where x � y :≡ ((x = Λ ∧ y = Λ) ∨ ∃z(z ∈ x ∧ z ∈ y)).

At least, any acceptable solution is infinite, as the next observation shows:

Fact 4.7.1. Any model U of (Λ) + (M ) + (C ) + (x .= y → x � y) is infinite.

Proof. First notice that Λ � M (x) for no x, and that, as �̇ coincides with
.= under (C ), we have M (x) � M (y) ⇒ x

.= y. Then it follows from the
assumptions that we can define a potentially infinite sequence of elements in
U by iterating M (·) from ΛU (as in Fact 4.5.1). �

Just to stress the combinatoric nature of seeking an acceptable solution,
we now formulate the corresponding version of Theorem 4.4.2.

Fact 4.7.2. A set U is the universe of an acceptable solution if and only if
there is an equivalence R on U together with a bijection f : U −→ P(U/R)
such that u R v ⇒ f ‘u ∩ f ‘v �= ∅ or f ‘u = f ‘v = ∅.

Interestingly, the existence of an acceptable solution was established in
[5], without any reference to Skala’s set theory. The authors used that struc-
ture to promote what is called ‘rough set theory ’ (see also [6]). As furtively
mentioned in 3.12, that solution, whose cardinality is 22ℵ0 , arises from an
inverse limit construction in DCPO . Although we admit to not having made
any serious attempt, it might be interesting to try to characterize those µ

such that 2µ is the cardinal of the universe of an acceptable solution. Call
such a cardinal acceptable. If the construction given in [5] generalizes to κ-
dcpo’s for any regular cardinal κ - which seems to be the case - then 2κ is
acceptable. But perhaps there is a more direct way to generate acceptable
solutions; and then, can one prove an acceptable version of Theorem 4.6.5?
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Chapter 5

SKOLEM’S SPINE MODEL(S)

The twin models we present here first appeared in [37], and then in [38]
where Skolem finally proved the consistency of Comp[L +

∗ ]. We show in
this chapter that these are in fact natural topological models of Abst� [Lτ

+
∗ ],

(re)establishing by the way the consistency of Abst[Lτ
+
∗ ]+Ext (see [26]). We

then start the comparison between (✸) + Abst[Lτ
+
∗ ] and (✸) + Comp[L [+]].

5.1 The B-sequence
Any model of Comp[L +

∗ ] is a model of (Λ) + (V) + (W) + (B), so we start
by looking - as Skolem did - at sets which arise from Λ & V under (B).

Assume (B) and define inductively Bn(v), for n ∈ , as follows:

B0(v) := v

Bn+1(v) := B(Bn(v)).

It is then easily checked that, for each n ∈ ,

∀x∀y(Bn(x) ∈ Bn(y) ↔ x ∈ y) (†).

Now, let Λn := Bn(Λ) and Vn := Bn(V), for any n ∈ .

Proposition 5.1.1. Assuming (Λ) + (V) + (W) + (B), we have

(1) for any m,n ∈ , Λm /∈ Λn and Vm ∈ Vn ;

(2) for any m,n ∈ , m < n ⇔ Λm /∈ Vn ⇔ Vm ∈ Λn ;

(3) for any n ∈ , Λn /∈ W and Vn ∈ W ;

(4) for any n ∈ , W /∈ Λn and W ∈ Vn .
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Proof. If m � n, it follows from (†) that Bm(x) ∈ Bn(y) ↔ Bm−n(x) ∈ y,
and if m < n, that Bm(x) ∈ Bn(y) ↔ x ∈ Bn−m(y) ↔ Bn−m−1(y) ∈ x.
Now, to obtain (1), take respectively x = y := Λ and x = y := V; and to get
(2), take x := Λ and y := V, or x := V and y := Λ. Notice that (3) follows
directly from (1) & (2), and (4) follows from (3). �

Corollary 5.1.2. For any n, m ∈ , Vn � .= Λm; and Λn � .= Λm, Vn � .= Vm

unless n = m. Consequently, any model of (B) is infinite.

Only the truth value of W ∈ W has not been settled by Proposition 5.1.1,
and this is really a matter of choice, as the next section shows.

5.2 The model(s)
Let U stand for {a0, a1, . . . , an, . . . , c, . . . , bn, . . . , b1, b0}, where an is meant to
be a name for Λn, bn for Vn, and c for W. Then we define the membership
relation on U in accordance with Proposition 5.1.1, i.e. [an]U := {bm | m < n}
and [bn]U := U \{am | m < n}, for any n ∈ , and either [c]U := {bn | n ∈ }
or [c]U := {bn | n ∈ }∪ {c}, depending on whether we want c /∈U c or c∈U c.
Explicitly, here is the truth table of the membership relation(s) thus defined:

�U a0 a1 a2 · · · c · · · b2 b1 b0

a0 0 0 0 · · · 0 · · · 0 0 1
a1 0 0 0 · · · 0 · · · 0 1 1
a2 0 0 0 · · · 0 · · · 1 1 1
...

...
...

... . . . ... . .. ...
...

...
c 0 0 0 · · · 0/1 · · · 1 1 1
...

...
...

... . .. ... . . . ...
...

...
b2 0 0 0 · · · 1 · · · 1 1 1
b1 0 0 1 · · · 1 · · · 1 1 1
b0 0 1 1 · · · 1 · · · 1 1 1

It is easily seen from this table that, for any u, v ∈ U , u �. U v ⇔ u �̇U v ⇔
u � v, where this latter is just the ordering of the elements as they appear:

a0 � a1 � a2 � · · · � c � · · · � b2 � b1 � b0 .

Equipped with that ordering, U is a complete chain and we observe that
the collectable subsets in U are all the upper sets except {bn | n ∈ } ∪ {c}
when c /∈U c, or except {bn | n ∈ } when c∈U c, so that, in both cases, U
just miss being a model of ((�)) (cf. Theorem 4.3.4).
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As U is a complete lattice, it is in particular a dcpo, and so is its order
dual U

∗. With this in mind, we can see that the collectable subsets are
exactly the Scott-open subsets of U when c /∈U c; whereas these are just the
Scott-closed ones of U

∗ when c∈U c (seeing that among all the upper sets in
U , only {bn | n ∈ }∪{c} is not Scott-open, and that among all the lower sets
in U∗, only {bn | n ∈ } is not Scott-closed). Therefore, as the collectable
subsets in U are the open/closed subsets of U with respect to some suitable
topology on U , it will result that U |= ((✷)) but �|= (✸) when c /∈U c, whereas
U |= ((✸)) but �|= (✷) when c∈U c (see Corollary 5.3.3 below).

But the key observation here is that B(c) = c in U , from which it follows
that U |= (Λ) + (V) + (W) + (B), as expected. In fact, it was shown in
[37, 38] that U is a model of Comp[L +

∗ ] - and so the simplest conceivable.
In the next section we improve Skolem’s result by showing that, even more
surprisingly, U |= Abst� [Lτ

+
∗ ].

It should have been noticed before that by interchanging 0 with 1 ev-
erywhere in the truth-table of ∈, it is manifest that U with c∈U c is just
isomorphic to the dual Uc of U with c /∈U c, so that we may actually get rid of
the schizophrenic nature of U . In the next section we shall only consider the
case �U ‘(c, c) = 0 and formally adopt the valued setting. It is worth recalling
at this point the few things on Scott-continuity we mentioned in 3.11.

5.3 The proof
A simple look at the table shows that �U is monotone. We have much more:

Proposition 5.3.1. �U : U × U −→ 2 is Scott-continuous.

Proof. It suffices to show that �U is continuous in each variable separately.
Let v ∈ U and ∅ �= D ⊆ U . Suppose first that D ∈ D. Then we
have �U ‘( D, v) � d∈D �U ‘(d, v) � �U ‘( D, v), and likewise we show that
�U ‘(v, D) = d∈D �U ‘(v, d). Now suppose D /∈ D. So D = c and
D ⊆ {an | n ∈ }. If v = am for some m, we have �U ‘(d, v) = �U ‘(v, d) = 0,
for all d ∈ D, so that d∈D �U ‘(d, v) = d∈D �U ‘(v, d) = 0 = �U ‘( D, v) =
�U ‘(v, D). If v = bm for some m, as there always exists an ∈ D with n > m,
we have �U ‘(d, v) = �U ‘(v, d) = 1, for some d ∈ D, so that d∈D �U ‘(d, v) =

d∈D �U ‘(v, d) = 1 = �U ‘( D, v) = �U ‘(v, D). If v = c, we have �U ‘(d, v) =
�U ‘(v, d) = 0, for all d ∈ D, so that d∈D �U ‘(d, v) = d∈D �U ‘(v, d) = 0 =
�U ‘( D, v) = �U ‘(v, D) because �U ‘(c, c) = 0 precisely. �

Corollary 5.3.2. [[·]]U : U −→ �U → 2� is a Scott-homeomorphism.
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Proof. That [[·]]U : U −→ �U → 2� and is Scott-continuous directly follow
from Proposition 5.3.1. As was initially observed, the collectable subsets in
U are exactly the Scott-open subsets of U , which shows that [[·]]U is onto.
Now, that its inverse [[·]]−1

U
is also Scott-continuous is easily seen. �

Corollary 5.3.3. U |= ((✷)) but �|= (✸).

Proof. We already know that U |= ((✷)). To show that U �|= (✸), it suffices
to notice that ‘{z | z ∈ z}’ does not exist in U . Indeed, if this latter was to
exist, it should be c. But as U |= ∀z(z ∈ z → c ∈ z), we should then have
c∈U c, which is precisely false here. �

Remark 5.3.1. By the way, Corollary 5.3.3 provides a counter-example to the
converse of Fact 4.1.1, since we noticed that �U ; �. U� is a complete lattice.

We are now ready to proof the main result:

Theorem 5.3.4. U |= Abst� [Lτ
+
∗ ].

Proof. We show by induction on the complexity that each term τ(p̄) of Lτ (U)
has a ‘suitable’ Scott-continuous interpretation τU : (ū) �−→ τU(ū).

First, if τ is just a variable, say pk in p̄, then we take τ
U : (ū) �−→ uk,

which is clearly Scott-continuous; and if τ is any fixed v ∈ U , then we take
τU : (ū) �−→ v, which is also obviously Scott-continuous.

We now turn to the case where τ(p̄) is a set abstract λxϕ for a Lτ (U)-
formula ϕ(x, p̄). Here, that the interpretation is ‘suitable’ means, of course,
that |τU(ū) ·v|U = |ϕ(v, ū)|U for any ū, v in U , from which incidentally results
the uniqueness of such a suitable interpretation.

The proof goes by induction on the complexity of ϕ :

1) ϕ is atomic, say ϕ is ρ · σ in which ρ(x, p̄),σ(x, p̄) are Lτ (U)-terms.
Then τ

U : (ū) �−→ [[v �→ �U ‘(σU(v, ū), ρU(v, ū))]]−1
U

is clearly Scott-continuous,
and this is the suitable interpretation of λxϕ.

2) ϕ(x, p̄) is ψ(x, p̄) ∨ χ(x, p̄). Let σ(p̄) stand for λxψ and ρ(p̄) for λxχ.
Then τU : (ū) �−→ [[v �→ ∨‘(σU(ū) · v , ρU(ū) · v)]]−1

U
is the suitable interpreta-

tion of λx ϕ; it is Scott-continuous for so is ∨ : 2×2 → 2 : (x, y) �→ max{x, y}.

3) ϕ(x, p̄) is ψ(x, p̄) ∧ χ(x, p̄). Likewise with ∧ : (x, y) �→ min{x, y}.

4) ϕ(x, p̄) is ∃yψ(x, y, p̄). Let σ(y, p̄) stand for λx ψ. Notice that for any
ū, v in U , |∃yψ(v, y, ū)|U = maxw∈U |ψ(v, w, ū)|U = maxw∈U |σU(w, ū) · v|U =
|σU(b0, ū) · v|U . Thence τ

U : (ū) �−→ [[v �→ σ
U(b0, ū) · v]]−1

U
is the suitable

Scott-continuous interpretation of λxϕ.
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5) ϕ(x, p̄) is ∀yψ(x, y, p̄). Likewise, for any v, ū, we have |∀yψ(v, y, ū)|U
= minw∈U |ψ(v, w, ū)|U = minw∈U |σU(w, ū) · v|U = |σU(a0, ū) · v|U , so that
τ
U : (ū) �−→ σ

U(a0, ū) is the suitable Scott-continuous interpretation of λxϕ.

Finally, we consider the case where τ is a reflexive set abstract λyxϕ for
a Lτ (U)-formula ϕ(x, y, p̄). Let σ

U(y, p̄) be the suitable interpretation for
λxϕ, and then, given ū in U , let fū : U −→ U : v �−→ σ

U(v, ū). Clearly
fū is Scott-continuous on U ; then let µ(fū) be its least fixpoint. As the
application (ū) �−→ fū is Scott-continuous, so is (ū) �−→ µ(fū); and as we
have |µ(fū) · v|U = |σU(µ(fū), ū) · v|U = |ϕ(v, µ(fū), ū)|U , it follows that
τ
U : (ū) �−→ µ(fū) is a suitable Scott-continuous interpretation of λyxϕ

(note that such a suitable interpretation is not necessarily unique here).

To have a clear conscience, it would remain to convince the reader that the
interpretation of the abstractor we have given fulfils the substitutivity clause
stated in Section 2.3, which is particularly awkward to check in details. �

Remark 5.3.2. According to Corollary 5.3.2, the spine model U with c /∈U c

is a solution to U ∼= �U → 2� in DCPO. But using the machinery of
dcpo’s, we know that the minimal solution to this reflexive equation can be
obtained by iterating the functor �· → 2� and then taking the inverse limit
of the sequence so generated. Evidently this minimal solution should be U .
Likewise, the spine model U with c∈U c is easily seen to be the minimal
solution to U ∼= �U → 2∗�. Of course, as ordered sets, these are isomorphic,
but the homeomorphisms - and so the set-theoretic structures - slightly differ.
It is remarkable that these canonical solutions arise from pure and abstract
set-theoretic considerations.

5.4 Abstraction versus comprehension
First of all, since U is obviously extensional, it should be stressed that we
thus have also established the consistency of Abst[Lτ

+
∗ ] + Ext. The original

proof of this, using a term model construction, was by far more complicated.
It is described in the next chapter where the theory Abst[Lτ

+
∗ ] + Ext is still

further broken down. In what follows we try to compare (✸)+Abst[Lτ
+
∗ ], the

consistency of which has just been proved, with GPK+ ≡ (✸)+Comp[L [+]].
We start the comparison on the semantic side. Let Sω stand in what

follows for the spine model with c∈U c.
We have shown that Sω |= (✸) + Abst[Lτ

+
∗ ], and this is clearly the sim-

plest model. As a topological space, Sω appears as the canonical solution
to U ∼= Pcl(U) within the category of Scott spaces. On the other hand, the
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hyperuniverse Nω, which is known to be a model of (✸)+Comp[L [+]], is also
the canonical solution to U ∼= Pcl(U) but within the category of complete
metric spaces; these are T2-spaces, whereas Scott spaces are only T0-spaces.
It is also worth noting that |Nω| = 2ℵ0 whereas |Sω| = ℵ0.

For ∃ to be continuous (in the sense of Chapter 4), the compactness of
Nω is the key property - see [17]. In Sω, it is monotonicity - cf. 4) in the
proof of Theorem 5.3.4. By the way, in that proof, to show that reflexive
set abstracts are naturally interpretable in Sω, we appealed to the fixpoint
property for Scott-continuous maps Sω −→ Sω. We do not know whether it
would be possible by a similar argument to prove that Nω |= Comp� [L +].
Note that it has been shown that Nω |= Comp� [x = y], or even that Nω |=
Comp� [x = y ∨ x = p], etc. But, as far as we know, the consistency of
Comp� [L +] has not been established.

On the axiomatic side, the first thing to say is that (✸) + Abst[Lτ
+
∗ ] and

(✸)+Comp[L [+]] are strongly incompatible (assuming Ext as always). This
is, of course, a straightforward consequence of the following observation.

Fact 5.4.1. (A ) is incompatible with Abst[Lτ
+
∗ ] + Ext.

Proof. This follows from Proposition 4.5.6, but we give here a more explicit
proof. Let τ(p) be {x | {z | z ∈ x} ∈ p} and then let r stand for τ(A (Λ)).
Assuming (A ) and Abst[Lτ

+
∗ ], r is a set, and now, using Ext as in the proof

of Fact 3.8.1, it is easily seen that r ∈ r ↔ r /∈ r. �

It is not known whether the use of parameters in set abstracts could be
avoided in the proof. Thus far, the best we are able to show is the following.

Proposition 5.4.1. Abst[Lτ
+
∗ ]� and (✸)� + Comp[L [+]] are incompatible,

where Abst[Lτ
+
∗ ]� and (✸)� respectively gather those parameter-free instances

of Abst[Lτ
+
∗ ] and (✸).

Although not very difficult, the proof of Proposition 5.4.1 requires some
basic features of the theory (✸)� + Comp[L [+]], which was called GPK for
historical reasons and was deeply investigated in [12]. Referring to this latter,
we shall content ourselves hereafter with pointing out what we need.

In GPK, any class X := ‘{x | ϕ(x)}’ definable without parameters has
a ‘closure’, namely {x |✸ ϕ}, which we denote here by X. Thereupon it was
shown that many pseudo-topological considerations can be developed within
GPK. Thus, it was proved that Von Neumann ordinals are definable in GPK

and that these are isolated points, that is, ‘{α}’ is closed for each α in On,
the class of ordinals, which in turn was proved to satisfy On = On ∪ {On}
(in response to Burali-Forti’s paradox). These facts will be enough to prove
Proposition 5.4.1 by showing that the class X := ‘{x | {z | x ∈ x} ∈ x}’,



5.4. Abstraction versus comprehension 57

interpreted in the obvious way, cannot be closed in GPK, whereas this should
be a set according to Abst[Lτ

+
∗ ]�.

Proof. We work in GPK and rewrite the class X as

‘{x | (x ∈ x ∧ V ∈ x) ∨ (x /∈ x ∧ Λ ∈ x)}’ .

Notice that On \ {Λ} ⊆ X. We mentioned that On is an accumulation point
of On, and that Λ is an isolated point. It is then easy to see that On is also an
accumulation point of On\{Λ}, and so of X. Whence On ∈ X. But On does
not belong to X, for On ∈ On and it is clear that V /∈ On(= On ∪ {On}).
Therefore X is not closed. �

We have thus shown that GPK is allergic to such a typical set abstract
as {x | {z | x ∈ x} ∈ x}. We do not know whether Abst[Lτ

+
∗ ]� +Comp[L [+]]

is already inconsistent (assuming Ext). Note that such results may serve
to measure the amount of negations that appear in eliminating positive set
abstracts. Proposition 5.4.1 is due to Hinnion and appeared in [24].

The existence of W is emblematic of all these positive set-theories. The
schizophrenic nature of the spine model(s) revealed that W ∈ W is unde-
cidable from Abst[Lτ

+
∗ ] - and so from Comp[Lτ

+
∗ ]. Although this is very

unlikely to be true, we do not know whether W ∈ W is decidable from
(✸)+Abst[Lτ

+
∗ ] / (✷)+Abst[Lτ

+
∗ ]; as well as it is not known whether W ∈ W

is decidable from GPK
+, i.e., (✸)+Comp[L [+]]. It seems nobody has looked

into the status of W ∈ W in hyperuniverses.
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Chapter 6

TERM MODELS

This last chapter discusses the term model construction that was used in [24]
to prove the consistency of Abst[Lτ

+
∗ ] + Ext. In initiating the comparison

between the term models so constructed and the spine models of Chapter 5,
we show that Abst[Lτ

+
∗ ] + Ext has quantifier elimination.

6.1 Exploring a syntactical universe

By a term model we mean any set-theoretic structure U whose universe U is
exclusively made of terms - constants, variables, set abstracts - conceived as
syntactical expressions (e.g. sequences of symbols in the meta-theory), and
such that for every {x | ϕ} ∈ U , we have U |= ∀x(x ∈ {x | ϕ}↔ ϕ).

In this chapter U is taken to be the set of all closed (i.e. parameter-free)
set abstracts {x | ϕ}, where ϕ(x) is first in Lτ

+, and then we will restrict
ourselves to Lτ

+
∗ -formulas. The letters a, b, c, . . .will stand for elements in U .

We notice that there is a canonical interpretation of the abstractor on U .
Namely, given any Lτ

+-formula ϕ(x, p̄) and any ā in U of the same length as
p̄, we just take {x | ϕ}U(ā) to be {x | ψ} where ψ is ϕ(x, ā). It is clear that
this interpretation fulfils the substitutivity property stated in 2.3, in which
= is taken to be the identity on U . Unless otherwise mentioned, this latter
is assumed to be the interpretation of the equality relation on U - though
we will see below (Fact 6.1.2) that it is not suitable at all. Thus, in order to
turn U into an Lτ -structure, we only have to specify the interpretation of ∈.

For convenience, we may identify in what follows any structure U on U

with a subset A of U ×U , namely ∈U , and then write A |= ϕ for U |= ϕ, |ϕ|A
for |ϕ|U , and so on. We now show how to select those A satisfying Abst[Lτ

+].
To proceed, for any A ⊆ U × U , we define A+, the ‘upgraded version’ of

A, as follows:

for any a, b ∈ U with b = {x | ϕ}, |a ∈ b|A+ := |ϕ(a)|A
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The relevance of considering the upgrading operator (·)+ on P(U × U)
lies in the following observation.

Proposition 6.1.1. A |= Abst[Lτ
+] if and only if A ∈ Fix((·)+).

Proof.

Necessity: Let a, b in U with b = {x | ϕ}. We have |a ∈ b|A+ = |ϕ(a)|A =
|a ∈ b|A (because A |= Abst[Lτ

+]), which shows that A
+ = A.

Sufficiency: Let ϕ(x, p̄) be any Lτ
+-formula. Then take any b̄ in U of the

same length as p̄, and let ψ(x) stand for the Lτ
+-formula ϕ(x, b̄). Assume

A = A
+. It follows that, for all a ∈ U , |a ∈ {x | ϕ}A(b̄)|A = |a ∈ {x | ψ} |A =

|a ∈ {x | ψ} |A+ = |ψ(a)|A = |ϕ(a, b̄)|A, showing that A |= Abst[ϕ(x)]. �

Now, as P(U×U) is a complete lattice, we may invoke the Knaster-Tarski
theorem to show that Fix((·)+) �= ∅, because:

Fact 6.1.1. (·)+ : P(U × U) −→ P(U × U) is monotone.

Proof. Suppose A ⊆ B. Then the identity function x �→ x defines a surjective
Lτ -homomorphism from �U ; A� onto �U ; B�. Now, by virtue of the preser-
vation property of Lτ

+-formulas (cf. 2.3), it follows that |ϕ(a)|A � |ϕ(a)|B,
for every Lτ

+-formula ϕ(x) and any a ∈ U , which shows that A
+ ⊆ B

+. �

We thus have easily established the consistency of Abst[Lτ
+]. But ac-

cording to Fact 3.8.1, it is hopeless to try to find any model satisfying Ext.
Nevertheless, it was proved in Chapter 5 that Abst[Lτ

+
∗ ] + Ext is con-

sistent. As said therein, the original proof of this appealed to a term model
construction, on which we shall now elaborate.

We therefore have to drop equality in formulas defining sets, and in what
remains of this chapter U will stand for the set of all closed Lτ

+
∗ -set abstracts.

Notice that Proposition 6.1.1 remains true, so we are looking for extensional

fixpoints of (·)+. As the following observation shows, we also have to rethink
the interpretation of equality in term models.

Fact 6.1.2. There is no normal term model of Abst[Lτ
+
∗ ] + Ext.

Proof. Clearly, Abst[Lτ
+
∗ ] + Ext � {x | x ∈ x} = {x | x ∈ x ∧ x ∈ x}. But

as these set abstracts are syntactically different, they will differ from each
other in any normal term model (because of our definition of what a term
model is). �

Anyway, in any structure fulfilling Ext the interpretation of = does co-
incide with the one of =. , and we are going to see that in some term models
of Abst[Lτ

+
∗ ] this latter may indeed be taken to be =. So we may here and

now assert the main result of this chapter.
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Theorem 6.1.2. There exists B ∈ Fix((·)+) such that B |= �
Ext.

The proof is given in the next section (see Theorem 6.2.4). But first, to
comment on this, it is worth looking further into the structure of Fix((·)+).

For any A ⊆ U × U , we define [A[:= {B ⊆ U × U | A ⊆ B}. Obviously,
this is a complete sub-lattice of P(U × U). Notice that A+ ∈ [A[ if and
only if for all B ∈ [A[ , B+ ∈ [A[. Then, for any A ⊆ U × U with A+ ∈ [A[,
let (·)+

A : [A[−→ [A[ denote the restriction of (·)+ on [A[. By the Knaster-
Tarski theorem, we know that Fix((·)+

A) is a complete lattice. Let A� and
A

� respectively stand for its least element and its greatest one. Obviously,
A

� = ∅� for all A ⊆ U ; and it is important to remember that A� can be
obtained inductively by iterating (·)+ from A.

We thus have shown that any A ⊆ U ×U with A ⊆ A
+ can iteratively be

extended to a model A∗ of Abst[Lτ
+
∗ ]. Notice that ∅� can also be obtained

inductively by iterating (·)+ from U × U ; this is because (U × U)+ ⊆ U × U

- or simply by duality : A �−→ U × U \ A.
We are going to prove in the next section that ∅� |= �Ext and ∅� |= �Ext,

and in fact these are the only extensional term models of Abst[Lτ
+
∗ ] we know.

On the other hand, it is fairly easy to concoct non-extensional term models.

Theorem 6.1.3. There exists B ∈ Fix((·)+) such that B �|= �
Ext.

Proof. Recall that W = {x | x ∈ x} and let W� stand for {x | x ∈ x ∧ x ∈ x}.
It is easy to see that |W ∈ W|∅� = |W� ∈ W�|∅� = 0 (use the fact that ∅� is
obtained inductively by iterating (·)+ from ∅). We now define a new structure
A as follows:

|a ∈ b|A := |a ∈ b|∅� for all a, b ∈ U such that a �= W� or b �= W�

|W� ∈ W�|A := 1

Clearly, ∅� ⊆ A, from which we show that A ⊆ A
+. For if a �= W� or b =

{x | ϕ} �= W�, we have |a ∈ b|A = |a ∈ b|∅� = |ϕ(a)|∅� � |ϕ(a)|A = |a ∈ b|A+ ;
and |W� ∈ W�|A+ = |W� ∈ W� ∧W� ∈ W�|A = 1. Now, we may take B := A�.
Indeed, |a ∈ W|A� = |a ∈ a|A� = |a ∈ a ∧ a ∈ a|A� = |a ∈ W�|A� , for
any a ∈ U , so that A� |= W =. W�; but |W� ∈ W|A� = |W� ∈ W�|A� = 1,
whereas |W ∈ W|A� = 0 (again use the fact that A� is obtained inductively by
iterating (·)+ from A, and |W ∈ W|A = 0), showing that A� |= W � .= W�. �

6.2 The proof
This section is devoted to proving Theorem 6.1.2. As announced, we show
that ∅� |= �

Ext and ∅� |= �
Ext. The proof is based on the fact that these
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fixpoints can be obtained inductively by iterating the upgrading operator.
Clearly, by duality, we may concentrate on establishing the result for ∅� only.
To achieve this, we need some preliminary definitions and a few lemmas.

We first make explicit the transfinite sequence of iterates that leads to ∅�:

∈0:= ∅
∈α+1:= (∈α)+

∈λ:=
α<λ

∈α (λ limit).

Thus we have ∅∗ =∈δ, where δ is the least ordinal α such that ∈α+1 =∈α.
Given a Lτ -formula ϕ, we define a primitive of ϕ to be any ‘maximal’

atomic sub-formula of ϕ (‘maximal’ with respect to the relation ‘is a sub-
formula of’), and we denote the set of its primitives by P(ϕ). So ϕ can be
built up from the formulas in P(ϕ) without using the abstractor {· | −}, only
by means of logical connectives and quantifiers.

In what remains of this section, all the formulas we shall be considering
are assumed to be closed Lτ

+
∗ -formulas ϕ with ∈δ|= ϕ, unless otherwise

explicitly stated. For such a formula ϕ, we let αϕ stand for the least ordinal
α such that ∈α|= ϕ. Notice that ∈α|= ϕ for all α � αϕ. We now define

D(ϕ) := {ψ(ā) | ψ(p̄) ∈ P(ϕ), ā in U , and ∈αϕ|= ψ(ā)}

Given such a formula ϕ and a ∈ U , we are going to be interested in
some specified occurrences of a (as sub-term) in ϕ. For that purpose, we
conveniently use the notation ϕ�a� for the formula ϕ together with a given
coloring of specified occurrences of a in it (possibly none). Then, given b ∈ U ,
ϕ�b/a� will stand for the formula obtained from ϕ by substituting b for each
colored occurrence of a in ϕ�a�.

We now move on to the key definition of determining set.

Definition. A determining set D of degree ≤ α for ϕ�a� is a non-empty set
of atomic formulas ψ�a�, such that :

(i) ∈α|= ψ�a� ;

(ii) for each b ∈ U ,
if ∈δ|= ψ�b/a� for all ψ�a� ∈ D, then ∈δ|= ϕ�b/a� .

To begin with, we prove that any formula ϕ�a� has a determining set.
Indeed, let D(ϕ�a�) := {ψ�a� | ψ ∈ D(ϕ)} where, for each ψ ∈ D(ϕ), the
colored occurrences of ‘a’ in ψ�a� are those occurrences of ‘a’ that are in the
primitive of ϕ from which ψ is obtained, and that are colored in ϕ�a� (so
it is understood that the hypothetical occurrences of ‘a’ substituted in that
primitive are not colored).
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Lemma 6.2.1. D(ϕ�a�) is a determining set of degree ≤ αϕ for ϕ�a� .

Proof. The proof goes by induction on the complexity of ϕ.

• If ϕ is any atomic Lτ
+
∗ -formula, then D(ϕ�a�) = {ϕ�a�}, and that is

obvious.

• If ϕ is ϕ1 ∧ ϕ2 , we have αϕ = max{αϕ1 ,αϕ2} and then D(ϕ1�a�) ∪
D(ϕ2�a�) ⊆ D(ϕ�a�) (where ϕ1�a� and ϕ2�a� are denoting respectively
ϕ1 and ϕ2 with the coloring induced by the one of ϕ�a�). Therefore,
assuming ∈δ|= ψ�b/a� for all ψ�a� ∈ D(ϕ�a�), we get ∈δ|= ϕ1�b/a� and
∈δ|= ϕ2�b/a� by the induction hypothesis, and thus ∈δ|= ϕ�b/a�.

• If ϕ is ϕ1 ∨ ϕ2 , then αϕ := min{αϕ1 ,αϕ2}. Assuming this latter to be
αϕ1 , we have D(ϕ1�a�) ⊆ D(ϕ�a�). We then proceed as above.

• If ϕ is ∀xϕ�(x), then, for any c ∈ U , we have αϕ�(c) � αϕ and so
D(ϕ�(c)�a�) ⊆ D(ϕ�a�) (where ϕ

�(c)�a� is denoting ϕ
�(c) with the col-

oring induced on ϕ
�(x) by the one of ϕ�a� ; particularly when c = a,

that occurrence of ‘a’ is not colored). Hence, assuming ∈δ|= ψ�b/a�
for all ψ�a� ∈ D(ϕ�a�), we get ∈δ|= ϕ

�(c)�b/a�, for all c ∈ U , by the
induction hypothesis, and thus ∈δ|= ϕ�b/a�.

• If ϕ is ∃xϕ�(x), then we have αϕ�(c) = αϕ , and thus D(ϕ�(c)�a�) ⊆
D(ϕ�a�), for at least one c ∈ U . We then proceed likewise.

�

The next lemma allows to specify determining sets for atomic formulas.

Lemma 6.2.2. Any atomic formula ϕ�a� has a determining set D of degree

≤ αϕ in which any atomic formula different from � is of the form (c ∈ a)�a�,
where the ‘a’ on the right side of ‘∈’ is colored. Furthermore, if ϕ�a� is not

itself of this form, then D is of degree ≤ αϕ − 1.

Proof. The proof goes by transfinite induction on αϕ for atomic formulas
ϕ�a�. Obviously, if ϕ�a� is itself of the desired form or is reduced to �, then
D(ϕ�a�) = {ϕ�a�} is a determining set of degree ≤ αϕ , as requested. We
then assume ϕ�a� to be of form c ∈ {x | ψ} where some occurrences (maybe
none) of a in c or ψ(x) are colored. Notice that αϕ = αψ(c) + 1 � 1. Let
ψ(c)�a� denote the formula ψ(c) together with the coloring induced by those
of c and ψ. We now look at D(ψ(c)�a�), which is of degree ≤ αϕ − 1, and
let S be the subset of it gathering the atomic formulas that are not of the
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desired form. By the induction hypothesis, for each χ�a� ∈ S, let Dχ�a� be a
suitable determining set for χ�a�. It is then easy to see that

D := (D(ψ(c)�a�)\S) ∪
χ�a�∈S

Dχ�a�

is a suitable determining set of degree ≤ αϕ − 1 for ψ(c)�a�, and so for ϕ�a�
as well. �

The following lemma ensures that those specific atomic formulas have the
substitutivity property with respect to =. .

Lemma 6.2.3. Let ϕ�a� be an atomic formula of the form (c ∈ a)�a� where

the ‘a’ on the right side of ‘∈’ is colored. Recall that we suppose ∈δ|= ϕ�a�.
Then ∈δ|= a =. b ⇒ ∈δ|= ϕ�b/a�

Proof. Again the proof is by transfinite induction on αϕ. Assume ∈δ|= a =. b.
Let ϕ�a� be an atomic formula of the form (c ∈ a)�a�, where the ‘a’ on the
right side of ‘∈’ is colored, and let c�a� denote c with the coloring induced
by the one of ϕ�a�. We then define ϕ�a�� as being c�a� ∈ a, namely it is the
same as ϕ�a� except that the ‘a’ on the right side of ‘∈’ is not colored. Now
let D be a determining set of degree ≤ αϕ−1 for ϕ�a�� as provided by Lemma
6.2.2. We thus may apply the induction hypothesis to each atomic formula of
the form (c� ∈ a)�a� that occurs in D to get ∈δ|= (c� ∈ a)�b/a�. Observe that if
αϕ = 1, then D is reduced to {�} and there is nothing to do. So, in any case,
we have ∈δ|= ψ�b/a� for each ψ�a� ∈ D. As D is a determining set for ϕ�a��,
that yields ∈δ|= ϕ�b/a��, namely ∈δ|= (c�b/a� ∈ a). Since ∈δ|= a =. b, it
follows that ∈δ|= (c�b/a� ∈ b), and this latter is nothing but ∈δ|= ϕ�b/a�. �

We are now ready to prove the result we announced.

Theorem 6.2.4. For any a, b ∈ U , ∈δ|= a =. b ⇒ ∈δ|= a
.= b .

Proof. Let a, b ∈ U such that ∈δ|= a =. b and let d ∈ U with ∈δ|= a ∈ d .
We have to show that ∈δ|= b ∈ d . Then let us denote by ϕ�a� the atomic
formula a ∈ d in which the only colored occurrence of ‘a’ is that one on
the left side of ‘∈’. According to Lemma 6.2.2, ϕ�a� has a determining set
D in which each atomic formula different from � is of the form (c ∈ a)�a�,
where the ‘a’ on the right side of ‘∈’ is colored. Now, by Lemma 6.2.3 and
the assumption ∈δ|= a =. b , we get ∈δ|= (c ∈ a)�b/a� for these formulas.
As D is a determining set for ϕ�a�, it follows that ∈δ|= ϕ�b/a�, and this is
∈δ|= b ∈ d. �
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6.3 The quotient structure(s)
We have thus shown that ∅∗ |= �Ext, and it follows that =. has the substitu-
tivity property in �U ; ∅∗� for L∗-formulas. But because ∅∗ |= Abst[Lτ

+
∗ ], this

can actually be extended to Lτ
+
∗ -formulas, as the next observation shows.

Fact 6.3.1. Let τ(p̄) be any Lτ
+
∗ -term, and let ā and b̄ in U , both of the

same length as p̄, such that ∅∗ |= ak =. bk for all k. Then ∅∗ |= τ(ā) =. τ(b̄).

Proof. We proceed by induction on the complexity of τ(p̄). Let τ(p̄) be
{x | ϕ}(p̄) for ϕ(x, p̄) in Lτ

+
∗ . From Theorem 6.2.4 and the induction hy-

pothesis, it is easy to see that, for all c ∈ U , ∅∗ |= ϕ(c, ā) ↔ ϕ(c, b̄). Now,
since ∅∗ |= Abst[Lτ

+
∗ ], it follows that ∈δ|= τ(ā) =. τ(b̄). �

It follows therefrom that =. is an acceptable interpretation of = in �U ; ∅∗�.
Consequently, this latter can be contracted to a normal countable model of
Abst[Lτ

+
∗ ] + Ext in which W /∈ W . Likewise, �U ; ∅∗� gives rise to a normal

(dual) model of Abst[Lτ
+
∗ ] + Ext in which W ∈ W .

It is natural to enquire whether these are isomorphic or not to the spine
models we studied in Chapter 5. In trying to answer this question we sur-
prisingly discovered that Abst[Lτ

+
∗ ] + Ext has quantifier elimination.

Theorem 6.3.1. For every Lτ
+
∗ -formula ϕ, there exists a quantifier-free

Lτ
+
∗ -formula ϕ

�
such that Abst[Lτ

+
∗ ] + Ext � ϕ ↔ ϕ

�
.

Proof. This is in fact a consequence of Proposition 4.5.6, according to which,
we recall, Abst[Lτ

+
∗ ] + Ext � ∀x∀y(x �. y → x �̇ y). It follows therefrom

that for any Lτ
+
∗ -formula ψ(x), we have ∀x∀y(x �. y → (ψ(x) → ψ(y)))

(consider the term {x | ψ}), from which it is easily seen that ∃xψ(x) ↔ ψ(V)
and ∀xψ(x) ↔ ψ(Λ). We can accordingly eliminate the quantifiers of any
formula written in prenex form. �

Remark 6.3.1. In light of the proof of Theorem 6.3.1, we can now see that the
induction steps 4) & 5) in the proof of Theorem 5.3.4 were just manifestations
of the equivalences ∃xψ(x) ↔ ψ(V) and ∀xψ(x) ↔ ψ(Λ).

Corollary 6.3.2. For every Lτ
+
∗ -formula ϕ, there exists a quantifier-free

Lτ
+
∗ -formula ϕ� such that Abst[Lτ

+
∗ ] + Ext � {x | ϕ} =. {x | ϕ�}.

Now, if one feels that the quotient structure(s) we have described here
are really isomorphic to the Spine Model(s) of Chapter 5, then one has to
show that for each quantifier-free Lτ

+
∗ -formula ϕ(x), either {x | ϕ} =. W or

there is some n ∈ such that {x | ϕ} =. Bn(V) or {x | ϕ} =. Bn(Λ).
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This seems very unlikely to be derivable from Abst[Lτ
+
∗ ] + Ext; and a

proof of this for �U ; ∅∗� would probably require a subtle induction procedure
as in 6.2, though we have not made any serious attempt in that direction yet.

At least, any answer, whether positive or negative, will certainly tell us a
bit more about the real expressive power of Abst[Lτ

+
∗ ] + Ext, in comparison

with the one of Comp[L [+]] + Ext for instance, as initiated in Section 5.4.
Just to be convinced, once more, that the equality makes all the difference.
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