
     1Translation of ‘Quasi-adéquation de la logique modale de second ordre S5 et adéquation de la logique modale de premier
ordre S5’, Logique et Analyse , 2, 1959, 99–121.

     2Bayart sometimes has S5.2 and sometimes S5,2. Probably a better terminology should be used.

QUASI-COMPLETENESS OF SECOND-ORDER MODAL LOGIC S5
AND COMPLETENESS OF FIRST-ORDER S51

A. BAYART

In the present article we frequently refer to our earlier article ‘La correction de la logique modale du
premier et second ordre S5’ (Logique et Analyse, 1). We refer to this as ‘CLM’.

This article contains six sections and thirty three paragraphs. The references will take the form
‘CLM, IV’ or ‘CLM, 12’, referring respectively to the fourth section and to the twelfth paragraph.

I:- Quasi-semantic definitions for second-order logic

0. The language of second-order modal logic contains all the propositions of the non-modal logic of
second order; these are the propositions of the language L defined in CLM, 2 which do not contain modal
symbols. If the second-order modal logic defined in CLM, IV is complete in the sense defined in CLM,
4 it follows that all the propositions valid in non-modal second-order logic will be derivable in second-
order S5.

Now the set of derivable propositions in second-order S5 is clearly recursively enumerable. In
particular the set of non-modal propositions is recursively enumerable. But from Gödel’s incompleteness
theorem it follows that the set of valid formulae of non-modal second-order logic is not recursively
enumerable. We must conclude that second-order S5 (which we shall call S5.22) cannot be complete.

This impossibility does not exist for first-order S5 and we shall prove the completeness of this
logic.

All the same Henkin has shewn that non-modal second-order logic is complete in an extended
sense which we may call ‘quasi-complete’. We prove that S5.2 is quasi-complete in an analogous sense.
In effect our exposition is no more than Henkin’s theorem adapted for S5.

1. Let U be a universe composed of a set A of individuals and a set B of worlds and let a and b be the
cardinal numbers of A and B respectively. In CLM, 1 we assumed, for each natural number n, a number
c = 2exp (b(a exp n)) of n-place intensional predicates.

Assume, for each natural number n, a non-empty set Pn of n-place intensional predicates based
on U. The sets A, B, P0, P1, P2, ... based on U constitute a quasi-universe Q based on U.

If for every natural number n, Pn contains all the n-place intensional predicates in U, Q will be a
complete quasi-universe based on U. In such a case we say that all the intensional predicates in U are
equally relative to Q.

2. We take a second-order modal language L defined as in CLM, 2. Consider a quasi-universe Q composed
of the set A of individuals and B of worlds and sets of intensional predicates P0, P1, P2, ... We agree that
the variables for individuals of the language L take as the values the individuals of the set A and that for
each natural number n the variables for n-place predicates take as their values the intensional predicates
in Pn.

If, in accordance with this convention, we are given a value to each of the variables of L we are
given a value-system S relative to the quasi-universe Q.

3. We take a quasi-universe Q, a world M of this quasi-universe and a system of values S relative to this
quasi-universe. We then define as follows the notions ‘quasi-true for quasi-universe Q, the world M and
value system S’, and ‘quasi-false for quasi-universe Q, world M and value system S’.

Let f be a proposition of language L.
If f is a variable p for 0-place predicates (i.e. a propositional variable), if P is the 0-place

intensional predicate given as the value of p, f will be quasi-true or quasi-false for QMS according as P
takes the value ‘true’ or ‘false’ when it receives M as argument.

If f is of the form bx1, where b is an n-place predicate variable (n � 0) and where x1,...,xn are
individual variables, if B, X1,..., Xn are respectively the n-place intensional predicate and the individuals
given as values of b, x1,..., xn, f will be quasi-true or quasi-false for QMS according as B takes the values
‘true’ or ‘false’ when it receives M, X1, ..., Xn as arguments in that order.
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If f has the form Np, where p is a proposition, f will be quasi-true for QMS if p is quasi-false for
QMS, and quasi-false for QMS if p is quasi-true for QMS.

If f has the form Kpq, where p and q are propositions, f will be quasi-true for QMS if p and q are
quasi-true for QMS, and quasi-false for QMS if not.

If f has the form Apq, where p and q are propositions, f will be quasi-true for QMS if p is quasi-
true for QMS or if q is quasi-true for QMS, and quasi-false for QMS if not.

If f has the form Cpq, where p and q are propositions, f will be quasi-true for QMS if p is quasi-
false for QMS or if q is quasi-true for QMS, and quasi-false for QMS if not.

If f has the form Epq, where p and q are propositions, f will be quasi-true for QMS if p and q are
quasi-true for QMS or if p and q are quasi-false for QMS, and quasi-false for QMS if not.

If f has the form Pvp where p is a proposition and v a variable for individuals or predicates f will
be quasi-true for QMS if for each system SN relative to Q which gives to all the variables other than v the
same values as S, p is quasi-true over QMSN. Otherwise f is quasi-false for QMS.

If f has the form Svp where p is a proposition and v a variable for individuals or predicates f will
be quasi-true for QMS if there is a system SN relative to Q which gives to all the variables other than v the
same values as S, and according to which p is quasi-true over QMSN. Otherwise f is quasi-false for QMS.

If f has the form Lp, where p is a proposition, f will be quasi-true for QMS if for every world MN
of the quasi-universe Q, p is quasi-true for QMNS, and otherwise f will be quasi-false for QMS.

If f has the form Mp, where p is a proposition, f will be quasi-true for QMS if there is a world MN
of the quasi-universe Q such that p is quasi-true for QMNS, and otherwise f will be quasi-false for QMS.

4. We take a quasi-universe Q and a world M of this quasi-universe. We define for propositions of the
language L the notions ‘quasi-valid in QM’ and ‘quasi-satisfiable in QM’.

Let f be a proposition of L.
The proposition f will be quasi-valid in QM if and only if, for each system S of values relative to

Q, f is quasi-true for QMS.
The proposition f will be quasi-satisfiable in QM iff there is a system S of values relative to Q such

that f is quasi-true for QMS.
Take a quasi-universe Q. We define for propositions of the language L the notions of ‘quasi-valid

in Q’ and ‘quasi-satisfiable in Q’.
Let f be a proposition of L.
The proposition f will be quasi-valid in Q iff it is quasi-valid in every QM (for every world M).
The proposition f will be quasi-satisfiable in Q iff there is some world M such that f is quasi-

satisfiable in QM.
We can express L in a deductive system D by being given axioms and rules of deduction. Assume

a quasi-universe Q.
The deductive system D is quasi-sound for Q if one can only prove in D formulae which are quasi-

valid in Q.
The deductive system D is quasi-complete for Q if one can prove in D all formulae which are

quasi-valid in Q.

5. It is easy to check that S5.2 is not sound with respect to every quasi-universe. Consider for instance a
quasi-universe which for 0-place intensional predicates contains only the predicate which takes the value
false at every world. In S5,2 one can easily deduce the sequent I,Spp, where p is a propositional variable.
But Spp is not satisfiable in the present quasi-universe. So, to develop the quasi-soundness of S5,2 we
must invoke the notion of a ‘regular quasi-universe’ as follows.

In CLM,9 we gave a semantic definition of the value of an n-place parapredicate. We must now
give the definition of the value of a proposition for a universe U and a value-system S. Let p be a
proposition of L. The value of p for US is the 0-place intensional predicate which takes, for every world
M of U, the value true or false according as p takes the value true or false for UMS.

We now give the following quasi-semantical definitions for a quasi-universe Q based on a value
system S relative to Q.

The value of a proposition p for QS is the 0-place intensional predicate which, for any world M
of U, takes the value true or false according as p is quasi-true or quasi-false.

The value of an n-place parapredicate Zx1...xn(p) for QS is the n-place intensional predicate
which, for every world M of U, and every series of individuals A1,..., An takes the value true or false
according as the proposition p takes the value quasi-true or quasi-false for MSN, where S is a value-system
which assigns the individuals A1,..., An as values of the individual variables x1,..., xn respectively, and
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which gives all other variables the same values as S.
It is easy to see that the value of a proposition or of a parapredicate is not always an intensional

predicate relative to Q. Thus, in the quasi-universe described above the propositional variable p can only
take a single value, and in the given value-system the value of Np is not relative to Q.

A quasi-universe Q is regular if, for every proposition p of the language L, for every parapredicate
Zx1...xn(p) constructed in the language L, and for every value system S relative to Q, the value of p and
the value of Zx1...xn(p) is an intensional predicate relative to Q.

It is clear that regular quasi-universes exist, notably the complete quasi-universes. The present
exposition will shew that there also exist regular incomplete quasi-universes.

6. We can now present the series of our quasi-semantical definitions:

A proposition is quasi-valid if and only if it is quasi-valid in all regular universes.
A proposition is quasi-satisfiable if and only if there is a regular universe in which it is quasi-

satisfiable.
A deductive system D is quasi-sound all propositions derivable in D are quasi-valid.
A deductive system D is quasi-complete if one can prove in D all formulae which are quasi-valid.

II:- Sematic properties of parapropositions

7. In what follows we adapt the semantic theorems of CLM,III. Certain of the quasi-semantical theorems
which follow hold for every quasi-universe, others only hold for regular quasi-universes. We will indicate
each time which of these is the case.

8. Theorem I. Consider a quasi-universe Q, two worlds M and MN of U and any value system relative to
U. If p is a modalised proposition then p has the same value (quasi-true or quasi-false) for QMS and
QMNS.

9. Theorem II. Let p be a proposition containing only v1,..., vn as free variables. Consider any
quasi-universe Q, a world M of Q and two value systems S and SN relative to U which do not differ in the
values assigned to v1,..., vn. Then p takes the same value (quasi-true or quasi-false) for QMS and QMSN.
In particular if p is a closed proposition then for any two value systems S and SN relative to Q, p takes the
same value for QMS and QMSN.

10. Theorem III.  Let p be a proposition containing only v1,..., vn as free variables. Consider any
quasi-universe Q based on a universe U, and two value systems S and SN relative to U which do not differ
in the values assigned to v1,..., vn. Then p takes the same value (see paragraph 5 above) for QS and QSN.
In particular if p is a closed proposition then for any two value systems S and SN relative to U, p takes the
same value for QS and QSN.

We could have formulated a semantic analogue of theorem III in CLM, III.

11. Theorem IV. Let k be a parapredicate Zx1...xn(p) which contains only the variables v1,..., vn
free. Take any quasi-universe Q, any world M of Q and any two value systems S and SN relative to U
which do not differ in the values given to the variables v1,..., vn. Then k takes the same value for QS and
for QSN. In particular if k is a closed parapredicate then for each quasi-universe Q and for any two value
systems S and SN relative to Q, k takes the same value for QS and QSN.

The value of the proposition p in theorem III and that of the predicate k in theorem IV are the
values relative to U and not necessarily values relative to Q.

12. Theorem V. For any quasi-universe Q, and world M of Q and any value system S relative to Q,
if Zx1...xn(p)a1...an is a well-formed simple primary paraproposition the value (quasi-true or quasi-false)
for QMS of the resultant pN of this proposition is the same as the value of p for QMSN, where SN is the
value system relative to Q which gives the individual variables x1,...,xn the individuals A1,..., An
respectively, these being the individuals that S assigns to the variables a1,..., an respectively, and which
gives all other variables the same values as S does.

13. Theorem VI. For any quasi-universe Q, any world M of Q, and any value system S relative to
Q, if Zx1...xn(p)a1...an is a well-formed simple primary paraproposition, and if P is the n-place intensional
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predicate which is the value for QS of the parapredicate Zx1...xn(p), the value for QS of the resultant pN
of the given paraproposition will be quasi-true or quasi-false for QMS according as the predicate P takes
the value true or false when it is given as arguments the world M and the individuals A1,..., An these last
being in this order the values given by S to the variables a1,..., an.

The predicate P relative to U is not necessarily relative to Q.

14. Theorem VII. For any regular quasi-universe Q, any world M of Q, and any value system S
relative to Q, if Zy(p)q is a well-formed propositional paraproposition, the value for QMS of the resultant
pN of this paraproposition is the same as the proposition p for QMSN where S is the value system relative
to Q which assigns the propositional variable y the 0-place predicate P such that p is the value of the
proposition q for QS, and which gives all the other variables the same value as S.

(The analogous theorem VI of CLM,15 could have been stated as follows: For any universe U, any
world M of U, and any value system S relative to U, if Zb(p)k is a well-formed propositional
paraproposition where b is an n-place predicate variable and k is an n-place parapredicate the value for
UMS of the final resultant pN of this paraproposition is the same as the value of the proposition p for UMSN
where SN is the value system which assigns to the propositional variable y the 0-place predicate P such that
p is the value of the proposition q for QS, and which gives all the other variables the same value as S.)

15. Theorem VIII. For any regular quasi-universe Q, any world M of Q, and any value system S
relative to Q, if Zb(p)k is a well-formed predicate paraproposition where b is an n-place predicate variable
and k is an n-place parapredicate the value for QMS of the final resultant pN of this paraproposition is the
same as the value of the proposition p for QMSN where SN is the value system which assigns to the variable
b the value which the parapredicate k takes for QS and which gives all the other variables the same values
as S.

In theorems VII and VIII, from the fact that Q is a regular quasi-universe, the intensional predicate
P is relative to Q, and so it is possible to use the value system SN described in these theorems.

16. Theorem IX. Let p be a proposition. Let v be a variable. Let w be a variable of the same type as
v which does not occur, either free or bound, in p.

Let q be the proposition obtained by substituting in p the variable w for the variable v wherever
the latter occurs bound (q being identical with p if v is not bound in p.) Then, for any quasi-universe Q,
any world M and any value system S relative to Q, p and q have the same value for QMS.

Proof by induction on the construction of p, distinguishing between cases where p has the form
Pvj or Svj, and those where p has the form Puj or Suj, u being a variable distinct from v and w.

In CLM,III we could have formulated a sematic theory analogous to the present theorem IX, but
such a theorem is not needed.

III:- Quasi-soundness and quasi-completeness of S5, 2

17. We say that a proposition p is derivable in S5,2 if the sequent I,p is derivable in S5,2.
We say that a sequent ä,I,ë is quasi-true for QMS if ä contains a proposition quasi-false for QMS

or if ë contains a proposition quasi-true for QMS. Otherwise the sequent ä,I,ë is false for UMS.
One can then easily define quasi-validity and quasi-satisfaction for sequents.
We say that the proposition p represents the sequent ä,I,ë if p is a disjunction whose disjuncts, in

order, are the negations of the propositions in ä followed by the propositions in ë. One can easily shew that
ä,I,ë is derivable in S5,2 iff p is derivable in S5,2.

One can equally easily shew that ä,I,ë is quasi-true or quasi-false for QMS, iff p is quasi-true or
quasi-false for QMS.

It follows that the quasi-soundness and quasi-completeness of S5,2 can be equally defined in terms
of propositions or in terms of sequents.

18. Theorem X. If all propositions derivable in S5,2 are quasi-satisfiable in a quasi-universe, then
all propositions derivable in S5,2 are quasi-valid in Q.

Proof from the fact that if a proposition p is derivable in S5,2 the proposition LPp is equally so.
Pp designates here the universal closure of p.

19. Theorem XI. If S5,2 is quasi-sound for a quasi-universe Q, Q is a regular quasi-universe.
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Proof: From the definitions of a quasi-sound system and a regular quasi-universe, and from the fact that
all propositions of the form SbLPx1...PxnE.bx1...xn.q, where b is an n-place predicate variable, and where
x1,..., xn are n distinct individual variables, and where q is a proposition not containing free b, and thus
all propositions of the form SpLEpq, where p is a propositional variable, and where q is a proposition not
containing free p, are derivable in S5,2.

20. Theorem XII. S5,2 is quasi-sound

The proof is analogous to the proof of the soundness of S5,2, given in CLM,IV. It must take account of
the fact that quasi-soundness has been defined in paragraph 6 above in terms of regular quasi-universes.

The soundness proof for PI (see CLM,21) is based on the quasi-semantical theorems V, VII or
VIII. Because the universes considered are regular it is possible to provide a value system S which gives
to the variable v the value given by S to the argument a of the paraproposition Zv(p)a.

21. Theorem XIII. If p is a consistent proposition, i.e., if the sequent p,I is not derivable in S5,2, p is
quasi-satisfiable.

Proof: Section IV of the present article will establish, for every consistent proposition p, a regular
quasi-universe Q such that p is satisfiable in Q.

22. Theorem XIV. S5,2 is quasi-complete
proof: If p is quasi-valid, Np will be a proposition which is not quasi-satisfiable. By contraposition

of theorem XIII we obtain that the sequent Np,I is derivable, from which it easily follows that the sequent
I,p is derivable.

IV:- Proof of theorem XIII

23. In what follows we understand by ‘proposition’ a proposition of language L defined in CLM2 and by
‘proposition or derivable sequent’ we mean a proposition or sequent derivable in S5,2.

We use capital letters B, D, F etc., (i.e., letters other than N, K, A, C, E, P, L, M, Z and I) to
designate propositions. These letters may be followed by one or two numerical indices.

The expressions B0, D0, F0 etc., (i.e., letters other than N, K, A, C, E, P, L, M, Z and I) designate
series or finite or infinite sets of propositions. These expressions may be followed by one or two numerical
indices.

Use of these syntactical notations may be combined with the preceding syntactical notations.
If all the propositions of a set or series B0 of propositions are elements of a set D0 of propositions

we say that the set or series B0 is drawn from the set D0.

24. A finite or infinite set B0 of propositions is consistent if there is no finite series ä included in B0 such
that ä,I is derivable.

A finite or infinite series of propositions is consistent if it is included in a consistent set.
A proposition p is consistent with the set B0 of propositions if the set B0 + p is consistent.
It is easy to shew that if ä is a finite series of propositions included in a consistent set B0, and if

ä,I,p is derivable then p is consistent with B0. A fortiori, if I,p is provable it is consistent with every
consistent set.

25. Let y be a consistent proposition. We order the set of propositions of the form Mp in a series B0, B1,
B2,... We order the set of propositions of the form Svp where v is any variable in a series D1, D2, D3,...

Consider the set of ordered pairs of natural numbers and order it diagonally as follows: 00, 01, 10,
11, 20,03, ... Assume the following series of propositions F0.0, F0.1, F1.0 ...

For each natural number n, Fn.0 is the proposition KMyCMpp where Mp = Bn.
For each pair of natural numbers n and m such that m � 0, Fn.m is the proposition CSvppN where

Svp = Dm and where pN = Zv(p)a, a designating the first variable in alphabetical order of the same type
as v which does not occur free in Svp nor in any proposition Fr.s where ‘r.s’ is an index which precedes
‘n.m’.

We assume the following set of propositions G0.0, G0.1, G1.0 ... For each natural number n Gn0
is the proposition Mp where p = Fn.0.

For each pair of natural numbers n and m such that m � 0, Gn.m is the proposition MK...Kp0...pm
where p0,..., pm are respectively the propositions Fn.0,..., Fn.m.
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26. Consider the set G0 of propositions G0.0, G0.1, G1.0 ...

Lemma I. The set G0 as defined above is consistent
Proof by reductio. Let ä be a finite series included in G0 such that ä,I is derivable. Let Gn.m be the

proposition of ä such that no other proposition of ä has an index of higher rank than n.m. let äN be the
series composed of all the propositions Gr.s appearing or not in ä whose index is lower than n.m, and let
Gn.m = p. It is clear that if ä,I is derivable then p,äN,I is also.

We shew that this is impossible by induction on the rank of the index n.m.
Suppose n = m = 0. Then G0.0 is a proposition of the form MKMyCMpp and ä is empty. We then

suppose that MKMyCMpp,I is provable. As we have KMyCMpp,I,MKMyCMpp we obtain by a cut that
KMyCMpp,I is derivable. As we have My,CMpp,I,KMyCMpp we obtain by a cut that My,CMpp,I is
derivable. Since My is modalised we have that MCMpp,My,I is derivable.

But I,MCMpp is derivable as follows:

Mp,p,I,p
________________

Mp,I,p,Mp p,I,CMpp
_________________ ________________

I,CMpp,Mp p,I,MCMpp
_________________ ________________

I,MCMpp,Mp Mp,I,MCMpp
_____________________________________

I,MCMpp

Hence by cut with MCMpp,My,I we obtain that My,I is derivable, contrary to the hypothesis according
to which it is a consistent proposition.

Suppose n � 0 and m = 0. Gn.m then has the form MKMyCMpp but äN is no longer empty.
Suppose then that MKMyCMpp,äN,I is derivable. We deduce successively that the following

sequents are derivable:

KMyCMpp,äN,I
My,CMpp,äN,I
MCMpp,My,äN,I (since all the propositions in ä are modalised.)
My,äN,I (since I,MCMpp is derivable.)

But ä contains the proposition G0.0 which has the form MKMyCMqq. Call this proposition ‘g’. Now we
have the following proof:

My, CMqq,I,My
_______________

KMyCMqq,I,My
_______________

MKMyCMqq,I,My

I.e., that g,I,My is derivable, whence by a cut with My,äN,I we obtain g,äN,I.
But g is a proposition of äN. Thus we have äN,I contrary to the induction hypothesis.
Suppose n is any number and m � 0. Gn.m has then the form MK...Kp0...pm where pm has the

form CSvqqN where qN is Zv(q)a. We then suppose that MK...Kp0...pm,äN,I is derivable. As Gn.m has an
index of higher rank than all the other propositions of äN, and as pm is the proposition Fn.m of which the
index is of greater rank than all the other propositions which enter into the composition of Gn.m or of a
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proposition of äN, we have that the variable a does not occur free or bound except in qN, i.e. in Zv(q)a.
Hence if MK...Kp0...pm,äN,I is derivable, the following sequents are also
K...Kp0...pm,äN,I
K...Kp0...pm!1,pm,äN,I or, what amounts to the same
K...Kp0...pm!1,CSvqqN,äN,I
SaSvqqN,K...Kp0...pm!1,äN,I (in virtue of what has been said about the variable a.)
But I,SaCSvqqN is derivable as follows:

Svq,q,I,q
___________

Svq,I,q,Svq q,I,CSvqq (1)
__________________ ___________

I,CSvqqN,Svq q,ISaCSvqqN
(3) ______________ ___________ (2)

I,SaCsvqqN,Svq Svq,I,SaCSvqqN
_____________________________________

I,SaCSvqqN

To enable verification of the legitimacy of this proof it is pointful to make the following remarks

(1) qN = Zv(q)a where a has no free or bound occurrences in q. It follows from this that q =
Za(qN)v and that CSvqq = Za(CSvqqN)v

(2) The variable a does not occur free in SaCSvqqN.
(3) CSvqqN = Za(CSvqqN)a

From SaCSvqqN, K...Kp0...pm-1,äN,I and from I,SaCSvqqN we obtain by a cut K...Kp0...pm-1,äN,I. Noting
that all the propositions of äN are modalised we obtain MK...Kp0...pm-1,äN,I. But MK...Kp0...pm-1,äN is
a proposition of äN. Hence we obtain äN,I, contrary to induction hypothesis. This completes the proof of
the lemma.

27. Consider the set of all modalised propositions and order this in a series H1, H2, H3, ... We assume the
following series of sets of propositions H00, H01, H02, ...

H00 = G0.
H0n+1 = H0n if the proposition Hn+1 is inconsistent with H0n and otherwise H0n+1 = H0n + Hn+1

We see immediately by induction on n, and noting that G0 is consistent, that for every n, H0n is
consistent.

Let H0 be the union of H00, H01, H02,...

Lemma II. H0 is consistent.

Proof by reductio. Let ä be a series included in H0 such that ä,I is derivable. Let Hn be the proposition with
the highest index in ä. It is clear that all the propositions of ä appear in H0n. Then H0n will be inconsistent,
contrary to construction.

Lemma III. If p is a modalised proposition then if p is consistent with H0 then p is an element of H0.

Proof: Let the index of p in the series H1, H2, H3 be n. If p is consistent with H0 then it is consistent with
H0n!1. From this we have by construction that H0n = H0n!1 + p. So p is an element of H0.

28. Assume the series F00, F01, F02 containing respectively the propositions F0.0, F0.1, F0.2, ..., F1.0,
F1.1, F1.2, ..., F2.0, F2.1, F2.2, ..., 

Assume the series Q00, Q01, Q02, ... defined as follows: Q00 = H0 + F00; Q01 = H0 + F01; Q02 = H0 + F02,
...
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Lemma IV. The sets Q00, Q01, Q02, ... are consistent.

Proof by reductio. Consider some series Q0n. Let ä be a series included in Q0n such that ä,I is derivable.
Let äN be the series composed of those elements of ä which are elements of F0n and let äO be that which
remains in the series ä when all the elements of äN are removed. Let ä� be the series Fn.0, ..., Fn.m where
m is the highest number occurring in the second index of a proposition in äN. It is clear that if ä,I is
derivable then ä�,äO,I [o�] is equally. Consider the proposition K...Kp0...pm where p0,..., pm are
respectively the propositions Fn.0, ..., Fn.m. We would have that K...Kp0...pm,äO,I is derivable. Taking
account of the fact that all the propositions of ä are elements of H0 and thus are modalised propositions
we would have that MK...Kp0...pm,äO,I is derivable. But MK...Kp0...pm = Gn.m and Gn.m like all the
propositions of ä is an element of H0. It follows that H0 would be inconsistent, contrary to lemma II.

It is clear that identical reasoning holds equally for the case where ä contains only the proposition
Fn.0.

29. Consider the set of all propositions and order them in a series R1, R2, R3 ... defined as follows:
For each number n R0n.1 = Q0n. For each number m+1 R0n.m+1 = R0n.m if Rm+1 is inconsistent with
R0n.m and otherwise R0n.m+1 = R0n.m + Rm+1. we see immediately by induction on m, and considering
that Q0n is consistent, that for each m R0n.m is consistent.

Consider the sets R00, R01, R02 ... which are respectively the unions of the sets R00.1, R00.1, R00.2
...R01.0, R01.1, R01.2, ... R01.2 ... R02.0, R02.1, R02.2, ...

Lemma V. The sets R00, R01, R02 ... are consistent.
Proof by reductio. Let ä be a series included in R0n such that ä,I is derivable. Let Rm be the

proposition of ä whose index m is the highest. It is clear that all the propositions of ä appear in R0n.m.
Hence R0n.m is inconsistent, contrary to construction.

Lemma VI. Let p be a proposition. If p is consistent with R0n p is an element of R0n.

Proof: Let the index of p in the series R1, R2, R3 be m. If p is consistent with R0n it is consistent with
R0n.m+1. from this we have, by definition, that R0n.m = R0nm!1 + p. So p is an element of R0n.

Lemma VII. If p is a modalised proposition and if p appears in a set R0n then, for all m, it appears in R0m.
Proof: Let i be the index of p in the series R1, R2, R3, ... If p belongs to R0n then p is consistent

with R0ni!1. But R0ni!1 contains H0. So p is an element of H0. From this, in virtue of the manner of
definition of the set R00, R01, R02 ... p is an element of each of these sets.

30. Assume a universe U containing a denumerably infinite set of individuals and a denumerably infinite
set of worlds.

We establish a 1-1 correspondence between individual variables and the individuals of U.
We establish a 1-1 correspondence between the sets R00, R01, R02 ... and the worlds of U. Consider

the set of intensional predicates which are given by U. For each natural number n we establish a
correspondence between n-place predicate variables and certain n-place intensional predicates such that
to each variable corresponds a single predicate, though several variables may correspond to the same
predicate.

If p is a propositional variable we let correspond to p the 0-place intensional predicate P which
takes the value ‘true’ for the worlds corresponding to the sets Rn which contain p, and the value ‘false’
for the other worlds.

If b is an n-place predicate variable (n�0) we let correspond to b the n-place intensional predicate
B which, when given as arguments a world M and the individuals X1, ..., Xn (not necessarily distinct),
takes the value ‘true’ or ‘false’ according as the proposition bx1...xn is contained or not in the set Rm, the
set Rm being that which corresponds to the world M and the variables x1,..., xn being those which
correspond to the individuals X1, ..., Xn respectively.

Consider the set of intensional predicates of U, which we have made correspond with the variables
of L. This set of predicates constitutes, with the set of individuals and the set of worlds of U, a quasi-
universe Q included in U. Further, the system of correspondences established constitutes a value-system
S, relative to Q. It is clear that the quasi-universe Q permits the establishing of other value system than
S.
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31. Lemma VIII. Let Q be a quasi-universe and S the value system relative to Q corresponding with the
set R0m. Let p be a proposition. Then p is quasi-true or quasi-false for QMS according as p occurs or not
in R0m.

Proof by induction on the construction of p. (v. remarks at the end of the present paragraph.)
If p is an elementary proposition the lemma follows from the correspondences established between

the variables of L and the quasi-universe Q.
If p has the form Ng and if Ng is in R0m then g is not in R0m, for otherwise R0m would be

inconsistent. So g is quasi-false for QMS and Ng is quasi-true for QMS.
If p, i.e. Ng, does not appear in R0m, then g appears in R0m, for if not it would follow that Ng and

g are both inconsistent with R0m. We would then have the derivable sequents Ng,ä,I and g,äN,I, where ä
and äN are sequents taken from R0m. Let äO = ä + äN. We then have Ng,äO,I and g,äO,I, and easily obtain
äO,I,g. By a cut with g,äO,I we obtain äO,I, and therefore that R0m is inconsistent. If g is in R0m, g is quasi-
true for QMS, and so Ng is quasi-false.

If p has the form Kgj and p appears in R0m, g and j appear in R0m. For Kgj,I,g and Kgj,I,j are
derivable. So g and j are consistent with R0m, and from this are clearly in R0m. So g and h are quasi-true
for QMS, and so Kgj is quasi-true for QMS.

If p, i.e. Kgj does not appear in R0m. g and j cannot both appear, for otherwise, since the sequent
g.j,I,Kgj is derivable, Kgj would be in R0m. One of the two propositions g and j will not be in R0m, and
this one will be quasi-false for QMS. So Kgj is quasi-false for QMS.

If p has the form Agj and p appears in R0m, one of the propositions g and j will appear in R0m, for
otherwise Ng and Nj will appear, and by Ng,Nj,Agj,I, R0m will be inconsistent. Whichever proposition
g or j appears in R0m will be quasi-true, and so Agj will be quasi-true for QMS.

If p, i.e., Agj does not appear in R0m, then neither g nor j appear in R0m. For otherwise, since
g,I,Agj and j,I,Agj are derivable Agj will appear in R0m. So g and j are quasi-false for QMS, and from this
Agj is quasi-false for QMS.

If p has the form Cgj and p appears in R0m, j will appear in R0m or g will not be in R0m, for
otherwise g and Nj will appear, and since Nj,g,Cgj,I is derivable, R0m will be inconsistent. If j appears in
R0m then j will be quasi-true for QMS, and if g does not appear in R0m then g will be false for QMS, and
in either case Cgj will be quasi-true for QMS.

If p, i.e., Cgj does not appear in R0m, then j will not appear in R0m and g will appear in R0m. For
otherwise, j or Ng will be in R0m, and since j,I,Cgj and Ng,I,Cgj are derivable Cgj will appear in R0m. So
j is quasi-false for QMS and g is quasi-true for QMS, and from this Cgj is quasi-false for QMS.

If p has the form Egj and p appears in R0m, g and j will both be in R0m or neither g nor j will be
in R0m, For if one of these propositions is in R0m and the other is not, one will have, for instance, that g
and Nj are in R0m. But Nj,g,Egj,I is derivable. It follows that g and j are both quasi-true for QMS or that
g and j are both quasi-false for QMS, and so Egj is quasi-true.

If p, i.e., Egj does not appear in R0m, then one of the propositions g and j will appear in R0m and
the other not. For, if both propositions appear then one notes that g,j,I,Egj is derivable, and if neither g nor
j is in R0m then Ng and Nj are in R0m, and Ng,Nj,I,Egj is derivable. So one of the two propositions must
be quasi-true for QMS and one quasi-false for QMS, and from this Egj is quasi-false for QMS.

If p has the form Pvg and if p occurs in R0m, then for every value system SN which gives all
variables other than v the same value as S, g is quasi-true for QMSN. For let X be the entity (individual or
predicate) which SN makes correspond with the variable v and let a be the variable, of the same type as v,
which S makes correspond with X. Two hypotheses arise according as Zv(g)a is a well-formed
paraproposition or not. If Zv(g)a is well-formed let j be its resultant. Then, since Pvg,I,j is derivable, j,
appears in R0m and is thus quasi-true for QMS. But in virtue of theorems V, VII or VIII, j has, for QMS,
the value which g has for QMSN. Thus g is quasi-true for QMSN.

If Zv(g)a is not well-formed it will be because v occurs free in g in the scope of a quantifier Pa or
Sa. let gN be the proposition obtained by replacing in g the variable a everywhere it occurs bound by a
variable c of the same type which does not occur in Pvg, hence not in g, free or bound. Pvg,I,PvgN is
derivable and hence PvgN is an element of R0m. Further Zv(gN)a is well-formed and hence jN is an element
of R0m and so quasi-true for QMS. It follows, in virtue of theorem IX, that g and gN have the same value
for QMSN. Thus g is quasi-true for QMSN. Then for all value systems SN which give to all variables other
than v the same value as SN, g is quasi-true for QMSN. Thus Pvg is quasi-true for QMS.

If p, i.e. Pvg, does not appear in R0m there is a value system SN which gives to all variables other
than v the same values as S, such that g is quasi-false for QMSN. For, if Pvg does not appear in R0m, NPvg
appears in R0m and as NPvg,I,SvNg is derivable, SvNg appears in R0m. But R0m contains a proposition
of the form CSvNgNgN where gN is Zv(g)a, this paraproposition being well-formed. It follows that NgN
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appears in R0m since SvNg,CSvNgNgN,I,NgN is derivable. So NgN is quasi-true for QMS and gN is quasi-
false for QMS. Let SN be the value system which gives v the same value as S gives to a and to all variables
other than v the same value as S. We have that g has the same value for QMSN as gN has for QMS. Thus
g is quasi-false for QMS. [QMSN ?] It follows that Pvg is quasi-false for QMS.

If p has the form Svg and if p occurs in R0m, then there is a value system SN which gives all
variables other than v the same value as S, and g is quasi-true for QMSN. (We leave the proof to the reader
who can adapt the proof given above for the case where p has the form Svg and does not appear in R0m.)
It follows that Svg is quasi-true for QMS.

If p, i.e. Svg, does not appear in R0m, then for every value system SN which gives to all variables
other than v the same values as S, such that g is quasi-false for QMSN. It follows that Pvg is quasi-false
for QMS. (We leave the proof to the reader who can use the proof given above for the case where p has
the form Pvg and appears in R0m.)

If p has the form Lg and if p appears in R0m since Lg,I,g is derivable g is in R0m and g is quasi-
true for QMS.

Further, in virtue of lemma VII, for any number mN, Lg appears in R0mN. It follows that for every
world MN g is quasi-true for QMSN, and from this that Lg is quasi-true for QMS.

If p, i.e. Lg, does not appear in R0m, NLg appears in R0m, and as NLg,I,MNg is derivable MNg
appears in R0m. Further for every number mN, MNg appears in R0mN. Suppose that the proposition MNg
is the proposition BmN (v. paragraph 25.) Then the proposition KMyCMNgNg,MNg,I,Ng is derivable, Ng
is an element of R0mN. It follows that if MN is the world corresponding to R0mN, g is quasi-false for QMNS
and hence g is quasi-false for QMNS and hence Lg is quasi-false for QMS.

If p has the form Mg and if p appears in R0m there is a world MN such that g is quasi-true for
QMNS. (We leave the proof to the reader, who can adapt the proof given above for the case where p has
the form Lg and does not appear in R0m.) It follows that Mg is quasi-true for QMS.

If p, i.e. Mg, does not appear in R0m, then NMg appears in R0m, and as NMg,I,LNg is derivable
LNg will be in R0mN for every number mN, and from this, for every world MN, g is quasi-false for QMNS,
It follows that Mg is quasi-false for QMS.

Remark: The proof cannot strictly be said to be by induction on the construction of p, but by
induction on propositions with an identical structure. Two propositions are said to have the same structure
if each can be obtained from the other by substitution of free or bound variables. Then, where p has the
form Pvg and p is in R0m we can assume that the lemma has been proved, not only for g, but also for
Zv(g)a. Note also that, for instance, where p has the form Pvg and is not in P0m we can suppose that the
lemma has been proved, not only for gN (gN = Zv(g)a) but also for NgN. This is clearly legitimate because
we have already proved that if the lemma holds for gN it holds for NgN.

32. Lemma IX. The proposition y is quasi-satisfiable in the quasi-universe Q.

Proof: Suppose that My is the proposition Bm (see paragraph 25.) Then KMyCMyy is the proposition
Fm.0 and it is in R0m. Now, since we have KMyCMyy,I,y it follows that y is in R0m and thus is quasi-true
for QMS, where M is the world corresponding to R0m.

33. Lemma X. The quasi-universe Q is regular.

Proof: For any number m all theorems are in R0m. So all theorems are satisfiable in Q. By theorems X and
XI Q is regular.

With the proof of theorem XIII we have established that if y is a consistent proposition there is a
regular quasi-universe Q in which y is quasi-satisfiable.

V:- Completeness of S5,1

34. Recall that we are given the following: (1) the language S5,1, defined in CLM,23; (2) the semantic
definitions of CLM, 3 and 4, which, as observed in CLM,24, are applicable to the language S5,1; (3)
theorems I, II and IV of CLM, adapted, as has been said in CLM,26, to the language S5,1; (4) a semantic
(not quasi-semantic) theorem analogous to theorem IX of the present article; for S5,1 the variables v and
w of this theorem are individual variables; (5) the deductive system S5,1 defined in CLM,27.

35. We can make sets and series of propositions of the language S5,1 analogous to the sets and series
defined in paragraphs 25-29 of the present article. Lemmas I-VIII can be proved as in those paragraphs.
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36. We assume a universe U, and establish the correspondences described in paragraph 30 of the present
article. We no longer need the quasi-universe Q containing just those intensional predicates which
correspond with predicate variables. Lemma VIII can be read as follows:

Lemma VIII. Let U be a universe and S a value system relative to U. Let M be a world in U corresponding
to the set R0m. Let p be a proposition. Then p is true or false for UMS according as p is or is not in R0m.

The proof is as in paragraph 31. We have the truth or falsity of p rather than quasi-truth or falsity
because we don’t have second-order quantifiers in the language S5,1. So if one looks at the series of quasi-
semantical definitions of ‘quasi-true’ and ‘quasi-false’ given in paragraph 3 of the present article, one can
see that they are equivalent to the notions ‘true’ or ‘false’. In other words, for the language S5,2, the
definitions of ‘quasi-true’ and ‘quasi-false’ are no different from those for ‘true’ and ‘false’ except where
v is a propositional or predicate variable. The difference in those cases arises because one doesn’t consider
all the intensional predicates in U, but only those which occur in the quasi-universe Q based on U. It
follows that for the language S5,2 a proposition containing second-order quantifiers might be quasi-true
or quasi-false for QMS without being true or false for UMS and vice versa. The absence of second-order
quantifiers in S5,1, makes this difference disappear.

It follows that we can proceed as follows: Apply the quasi-semantical definitions of paragraph 3
(not those of paragraph 4) to the language S5,1. In Lemma IV choose the quasi-universe Q, and not the
Universe U. Prove, as in paragraph 31, that p is or is not quasi-true or quasi-false for QMS according as
p is or is not in R0m. We can claim that p is true or false for UMS according as p is or is not in R0m, which
is essentially lemma VIII relative to S5,1, as formulated above.

37. We can prove, as in paragraph 32,

Lemma IX. y is satisfiable in a Universe U.
Lemma X falls out of the collection of lemmas I-IX proved for S5,1

Theorem XV. If p is a consistent proposition in S5,1 then p is satisfiable.
From this one can conclude

Theorem XVI. S5,1 is complete.

38. It has been possible to adapt the Henkin proof method to S5,2 and S5,1. One might have considered
adapting the Gödel proof method to S5,1. But one encounters a difficulty from the fact that the Gödel
method rests on the technique of prenex formulae, and this technique is unavailable in modal logic.
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